Skip to main content
Advanced Search

Filters: Tags: {"type":"USGS Scientific Topic Keyword"} (X) > partyWithName: Woods Hole Coastal and Marine Science Center (X)

150 results (113ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains coastal wetland synthesis products for the geographic region from Jamaica Bay to western Great South Bay, located in southeastern New York State. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and mean tidal range, are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with...
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
thumbnail
We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner and others, 2010) model to simulate ocean circulation, waves, and sediment transport in Barnegat Bay, New Jersey, during Hurricane Sandy. The simulation period was from October 27 to November 4, 2012. Initial conditions for the salinity and temperature fields in the domain were acquired from a 7-month simulation of the same domain (Defne and Ganju, 2018). We used a 2012 digital terrain model (Andrews and others, 2015) to prescribe the prestorm bathymetry. Wetting and drying was enabled, wave-current interaction was modeled with a boundary-layer formulation accounting for the apparent roughness of waves, and the vortex force formulation...
thumbnail
The numerical simulation of estuarine dynamics requires accurate prediction for the transport of tracers such as temperature and salinity. All numerical models introduce two kinds of tracer mixing: 1) by parameterizing the tracer eddy diffusivity through turbulence models leading to a source of physical mixing and 2) discretization of the tracer advection term that leads to numerical mixing. Both physical and numerical mixing vary with the choice of horizontal advection schemes, grid resolution, and time step. We utilize the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to study the mixing in the model by simulating four idealized cases with three different tracer advection schemes.
thumbnail
Fine-grained sediments, or “fines,” are nearly ubiquitous in natural sediments, even in the predominantly coarse-grained sediments that host gas hydrates. Fines within these sandy sediments can be mobilized and subsequently clog flow pathways while methane is being extracted from gas hydrate as an energy resource. Using two-dimensional (2D) micromodels to test the conditions in which clogging occurs provides insights for choosing production operation parameters that optimize methane recovery in the field. During methane extraction, several processes can alter the mobility and clogging potential of fines: (1) fluid flow as the formation is depressurized to release methane from gas hydrate, (2) shifting pore-fluid...
thumbnail
Natural cave passages penetrating a coastal aquifer in the Yucatan Peninsula (Mexico) were accessed to test the hypothesis that chemoclines associated with salinity gradients (haloclines) within the flooded cave networks of the karst subterranean estuary are sites of methane oxidation. Two field trips were carried out to the fully-submerged cave system located 6.6 km inland from the coastline in January 2015 and January 2016. Vertical chemical profiles across the water column haloclines were obtained using the OctoPiPi (OPP), a high-resolution water sampler built by the U.S. Geological Survey (USGS). The sampling efforts resulted in cm-scale profiles of major ions (e.g., chloride and sulfate), as well as concentrations...
The development of Submerged Aquatic Vegetation (SAV) growth model within the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model leads to a change in SAV biomass. The SAV biomass is computed from temperature, nutrient loading and light predictions obtained from coupled hydrodynamics (temperature), bio-geochemistry (nutrients) and bio-optical (light) models. In exchange, the growth of SAV sequesters or contributes nutrients from the water column and sediment layers. The presence of SAV modulates current and wave attenuation and consequently affects modelled sediment transport. The model of West Falmouth Harbor in Massachusetts, USA was simulated to study the seagrass growth/dieback pattern in a hypothetical...
thumbnail
In spring and summer 2017, the U.S. Geological Survey’s Gas Hydrates Project conducted two cruises aboard the research vessel Hugh R. Sharp to explore the geology, chemistry, ecology, physics, and oceanography of sea-floor methane seeps and water column gas plumes on the northern U.S. Atlantic margin between the Baltimore and Keller Canyons. Split-beam and multibeam echo sounders and a chirp subbottom profiler were deployed during the cruises to map water column backscatter, sea-floor bathymetry and backscatter, and subsurface stratigraphy associated with known and undiscovered sea-floor methane seeps. The first cruise, known as the Interagency Mission for Methane Research on Seafloor Seeps and designated as field...
thumbnail
Management efforts of the tidally-restricted Herring River in Wellfleet, MA include research to understand pre-restoration sediment conditions. Submerged multiparameter sondes that measure optical turbidity were deployed at four sites landward and seaward of the Herring River restriction. Periodically, the sites were visited and additional turbidity measurements were collected with a handheld multiparameter sonde, and water samples were collected for determination of suspended-sediment concentration (SSC). The handheld turbidity measurements were regressed against SSC using a repeated median regression to determine a calibration curve for calibrating the turbidity time-series data to SSC. The SSC derived from the...
thumbnail
This data release contains coastal wetland synthesis products for the state of Connecticut. Metrics for resiliency, including the unvegetated to vegetated ratio (UVVR), marsh elevation, tidal range, wave power, and exposure potential to environmental health stressors are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For...
thumbnail
The accretion history of fringing salt marshes located on the south shore of Cape Cod is reconstructed from sediment cores collected in low and high marsh vegetation zones. These marshes are micro-tidal, with a mean tidal range of 0.442 m. Their location within protected embayments and the absence of large rivers results in minimal sediment supply and a dominance of organic matter contributions to sediment peat. Age models based on 210-lead and 137-cesium are constructed to evaluate how vertical accretion and carbon burial rates have changed over the past century. The continuous rate of supply age model was used to age date 11 cores (10 low marsh and 1 high marsh) across four salt marshes. Both vertical accretion...
thumbnail
These data map the beach and nearshore environment at Head of the Meadow Beach in Truro, MA, providing updated regional context for the 2019 CoastCam installation. CoastCam CACO-01 are two video cameras aimed at the beach that view the coast shared by beachgoers, shorebirds, seals, and sharks. These data were collected as part of field activity 2022-015-FA and a collaboration with the National Park Service at Cape Cod National Seashore to monitor the region. In March 2022, U.S. Geological Survey and Woods Hole Oceanographic Institution (WHOI) scientists conducted field surveys to re-map the field of view of the CoastCam. Aerial images of the beach for use in structure from motion were taken with a camera (Sony a6000)...
thumbnail
This data release contains coastal wetland synthesis products for Chesapeake Bay. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors...
thumbnail
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
thumbnail
Understanding how effectively methane can be extracted from a gas hydrate reservoir requires knowing how compressible, permeable, and strong the overlying seal sediment is. This data release provides results for flow-through permeability, consolidation, and direct shear measurements made on fine-grained seal sediment from Site NGHP-02-08 offshore eastern India. The sediment was collected in a pressure core from the Krishna-Godavari Basin during the 2015 Indian National Gas Hydrate Program Expedition 2 (NGHP-02). Gas hydrate is a crystalline solid that forms naturally in the sediment of certain marine and permafrost environments where pressure is relatively high (equivalent to the pressure measured ~300 meters water...
thumbnail
The Sandy Hook artificial reef, located on the sea floor offshore of Sandy Hook, New Jersey was built to create habitat for marine life. The reef was created by the placement of heavy materials on the sea floor; ninety-five percent of the material in the Sandy Hook reef is rock. In 2000, the U.S. Geological Survey surveyed the area using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard (CCG) ship Frederick G. Creed. The purpose of this multibeam survey, done in cooperation with the U.S. Army Corps of Engineers when the Creed was in the New York region in April 2000, was to map the bathymetry and backscatter intensity of the sea floor in the area of the Sandy Hook artificial reef. The collected...
thumbnail
Unvegetated to vegetated marsh ratio (UVVR) in the Fire Island National Seashore and Central Great South Bay salt marsh complex, is computed based on conceptual marsh units defined by Defne and Ganju (2018). UVVR was calculated based on U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) 1-meter resolution imagery. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands, including the Fire Island National Seashore and Central Great South Bay salt marshes, with the intent of providing Federal, State, and local managers with tools to estimate...
thumbnail
This data release of dune metrics for the Massachusetts coast is part of a 2018 update to the Massachusetts Shoreline Change Project. Because of continued coastal population growth and the increased threat of coastal erosion, the Massachusetts Office of Coastal Zone Management (CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. Maps of historic shoreline locations from the mid-1800s to 1978 were produced from multiple data sources, and in 2001, a 1994 shoreline was added to enable the calculation of long- and short-term shoreline change rates. In 2013, the U.S. Geological Survey (USGS), in cooperation with CZM, delineated an additional oceanfront shoreline using 2007...


map background search result map search result map Collection, analysis, and age-dating of sediment cores from salt marshes on the south shore of Cape Cod, Massachusetts, from 2013 through 2014 High-resolution geophysical data collected along the Mississippi River Delta front offshore of southeastern Louisiana, U.S. Geological Survey Field Activity 2017-003-FA Aerial imagery and photogrammetric products from unmanned aerial systems (UAS) flights over the Lake Ontario shoreline at Sodus Bay, New York, July 12 to 14, 2017 2D micromodel studies of pore-throat clogging by pure fine-grained sediments and natural sediments from NGHP-02, offshore India Unvegetated to vegetated marsh ratio in Fire Island National Seashore and Central Great South Bay salt marsh complex, New York Dune Metrics for the Massachusetts Coast as Derived From 2013–14 Topographic Lidar Data U.S. Geological Survey hydrodynamic model simulations for Barnegat Bay, New Jersey, during Hurricane Sandy, 2012 Coastal wetlands from Jamaica Bay to western Great South Bay, New York Numerical model of Submerged Aquatic Vegetation (SAV) growth dynamics in West Falmouth Harbor Multibeam bathymetry and backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder Marine Geophysical Data Collected to Support Methane Seep Research Along the U.S. Atlantic Continental Shelf Break and Upper Continental Slope Between the Baltimore and Keller Canyons During U.S. Geological Survey Field Activities 2017-001-FA and 2017-002-FA Vertical chemical profiles collected across haloclines in the water column of the Ox Bel Ha cave network within the coastal aquifer of the Yucatan Peninsula in January 2015 and January 2016 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Head of the Meadow Beach, Truro, MA in March 2022, U.S. Geological Survey Field Activity 2022-015-FA Geospatial characterization of salt marshes in Chesapeake Bay Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Geospatial characterization of salt marshes in Connecticut (ver. 2.0, April 2024 Topographic and bathymetric data, structure from motion imagery, and ground control data collected at Head of the Meadow Beach, Truro, MA in March 2022, U.S. Geological Survey Field Activity 2022-015-FA Water quality data from a multiparameter sonde collected in the Herring River during November 2018 to November 2019 in Wellfleet, MA Aerial imagery and photogrammetric products from unmanned aerial systems (UAS) flights over the Lake Ontario shoreline at Sodus Bay, New York, July 12 to 14, 2017 Collection, analysis, and age-dating of sediment cores from salt marshes on the south shore of Cape Cod, Massachusetts, from 2013 through 2014 Vertical chemical profiles collected across haloclines in the water column of the Ox Bel Ha cave network within the coastal aquifer of the Yucatan Peninsula in January 2015 and January 2016 High-resolution geophysical data collected along the Mississippi River Delta front offshore of southeastern Louisiana, U.S. Geological Survey Field Activity 2017-003-FA Geospatial characterization of salt marshes in Connecticut (ver. 2.0, April 2024 2D micromodel studies of pore-throat clogging by pure fine-grained sediments and natural sediments from NGHP-02, offshore India Dune Metrics for the Massachusetts Coast as Derived From 2013–14 Topographic Lidar Data Geospatial characterization of salt marshes in Chesapeake Bay Multibeam bathymetry and backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder Marine Geophysical Data Collected to Support Methane Seep Research Along the U.S. Atlantic Continental Shelf Break and Upper Continental Slope Between the Baltimore and Keller Canyons During U.S. Geological Survey Field Activities 2017-001-FA and 2017-002-FA