Skip to main content
Advanced Search

Filters: Tags: {"type":"Water Science Field Team Keywords","name":"aquifer mapping"} (X) > partyWithName: Cooperative Water Program (X)

10 results (47ms)   

View Results as: JSON ATOM CSV
thumbnail
Introduction Detailed mapping of the glacial aquifer within the buried Fairport-Lyons bedrock channel in southern Wayne County, N.Y. is the latest study in the cooperative Detailed Aquifer Mapping Program between the U.S. Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map the extent of glacial aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others for delineation of groundwater contributing areas, assessing potential threats to aquifers from both point and non-point sources of pollution, responding to contamination from spills or leaks from underground storage facilities,...
thumbnail
Introduction Detailed mapping of the valley-fill aquifer within the Susquehanna River valley and adjacent tributary valleys in south-central Broome County (Towns of Conklin and Kirkwood) is the latest study in the cooperative Detailed Aquifer Mapping Program between the US Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map sand and gravel aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others to delineate groundwater contributing areas, assess potential threats to aquifers from both point and non-point sources, respond to contamination from spills or leaks from underground...
thumbnail
Background: A sequence of gently dipping carbonate bedrock - the Bertie Formation, Akron Dolostone, and Onondaga Limestone crop out along a 2- to5-mile wide band in western and central New York. These bedrock units trend east-west for 250 miles across the State and form extensive carbonate-bedrock aquifers which transmit and yield water from solution-enlarged fractures, bedding planes, and other openings (Olcott, 1995). Bedding planes or sub-horizontal fractures typically are the most enlarged and important water conduits. Karstic features such as sinkholes, swallets, solution channels, and caverns can locally transmit large amounts of surface water into the ground where the groundwater can move quickly and over...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Aquifer Mapping, Aquifer Mapping, Aquifer Mapping, Basin & Hydrogeologic Characterization, Basin & Hydrogeologic Characterization, All tags...
thumbnail
Problem - Since the 1980s, the U.S. Geological Survey (USGS) has mapped over 30 sand and gravel aquifers in upstate New York at the 1:24,000-scale. These mapped aquifers include both the primary and many of the principal aquifers as designated by the New York State Department of Environmental Conservation. Although the 1:24,000-scale maps are valuable in their present form, their usefulness is limited because the important features on the maps, namely aquifer boundaries and the surficial geology, are not available as digital geographic information system (GIS) datasets. Objectives - To maximize the usefulness of the aquifer maps, GIS datasets of the 1:24,000-scale aquifer maps will be developed. To further increase...
thumbnail
PROBLEM The unconsolidated aquifer in Enfield Creek Valley (fig. 1) was mapped by Miller (2000) and identified as one of 17 unconsolidated aquifers in Tompkins County that needs to be studied in more detail. Well records in Enfield Creek valley indicate that the northern part of Enfield Creek valley contains sand and gravel deposits which may be under unconfined conditions in some areas, confined in others, or both; and the southern part of the valley contains mostly sand and gravel under unconfined conditions. The valley will probably undergo increased development as the population in Tompkins County increases and spreads out from metropolitan areas. However, there is little geohydrologic data in the valley....
thumbnail
Introduction Detailed mapping of the valley-fill aquifer within the Owasco Inlet valley and adjacent tributary valleys in Cayuga County (Towns of Moravia and Locke) and Tompkins County (Town of Groton) is the latest study in the cooperative Detailed Aquifer Mapping Program between the US Geological Survey (USGS) and the New York State Department of Environmental Conservation (NYSDEC). The aim of the program is to map sand and gravel aquifers in New York State at a scale of 1:24,000. This information is used by NYSDEC Division of Water and others to delineate groundwater contributing areas, assess potential threats to aquifers from both point and non-point sources, respond to contamination from spills or leaks...
thumbnail
Problem - The valley-fill deposits in Upper Buttermilk Creek/Danby Creek valleys are sources of water for many homeowners, farms, and small businesses that are in this valley. The aquifer was mapped by Miller (2000) and identified as one of the 17 aquifers in Tompkins County that needs to be studied in more detail. However, there is little geohydrologic data in the valley. A cluster of wells in Upper Buttermilk valley are finished in sand and gravel, indicating that there is a sand and gravel aquifer in, at least, part of the valley. The Upper Buttermilk Creek/Danby Creek valleys are "through valleys"-- a part of a valley where the bedrock floor rose to land surface and formed a preglacial surface-water divide....
thumbnail
Problem - The New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH) are concerned about Problem - The New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH) are concerned about ground-water contamination in the carbonate-bedrock aquifers, especially relating to the inadvertent introduction of volatile organic compounds (VOCs) and manure to these aquifers. Groundwater can flow very quickly with minimal filtration or adsorption through solution-widened fractures in carbonate-bedrock aquifers. Therefore, large amounts of water and associated contaminants can move long distances, sometimes in short periods of time, and affect large areas. If these underground...
thumbnail
Problem - The Village of Pulaski in Oswego County, N.Y., obtains its water supply from groundwater that drains under gravity from an unconfined aquifer into three shallow dug wells. The well field is in an area where groundwater discharges to springs along the west edge of the Tug Hill Aquifer, which is comprised of beach and kame deposits of sand and gravel. A numerical groundwater model was constructed previously to simulate groundwater conditions in part of the Tug Hill Aquifer near the Pulaski well field. The modeling work was part of a wellhead protection study to develop a plan to protect the groundwater resources of the Village of Pulaski's public water-supply system. In addition, the USGS, in cooperation...


    map background search result map search result map Hydrogeologic Recharge Settings of the Carbonate-Bedrock Aquifer in Genesee County, Western New York Groundwater Flow Patterns near Pulaski, Oswego County, New York Development of GIS datasets for selected aquifers in New York Detailed Aquifer Mapping Program in Upstate New York Detailed Aquifer Mapping in Wayne County, New York, The Fairport-Lyons Channel Aquifer Geohydrology of the Unconsolidated Aquifer in Enfield Creek Valley, Town of Enfield, Tompkins County, New York Detailed Aquifer Mapping in the Susquehanna River Valley  in South-Central Broome County –Towns of Conklin and Kirkwood Hydrogeologic Recharge Settings of the Carbonate-Bedrock Aquifers in Livingston and Monroe Counties, Western New York Geohydrology of the Valley-Fill Aquifer in Upper Buttermilk Creek/Danby Creek Valleys, Town of Danby, Tompkins County, New York Detailed Aquifer Mapping in the Owasco Inlet valley Towns of Moravia, Locke (Cayuga County) and Groton (Tompkins County), New York Groundwater Flow Patterns near Pulaski, Oswego County, New York Geohydrology of the Unconsolidated Aquifer in Enfield Creek Valley, Town of Enfield, Tompkins County, New York Geohydrology of the Valley-Fill Aquifer in Upper Buttermilk Creek/Danby Creek Valleys, Town of Danby, Tompkins County, New York Detailed Aquifer Mapping in the Susquehanna River Valley  in South-Central Broome County –Towns of Conklin and Kirkwood Detailed Aquifer Mapping in the Owasco Inlet valley Towns of Moravia, Locke (Cayuga County) and Groton (Tompkins County), New York Detailed Aquifer Mapping in Wayne County, New York, The Fairport-Lyons Channel Aquifer Hydrogeologic Recharge Settings of the Carbonate-Bedrock Aquifer in Genesee County, Western New York Hydrogeologic Recharge Settings of the Carbonate-Bedrock Aquifers in Livingston and Monroe Counties, Western New York Development of GIS datasets for selected aquifers in New York Detailed Aquifer Mapping Program in Upstate New York