Skip to main content
Advanced Search

Filters: Tags: {"type":"Wildlife and Plants","name":"other wildlife"} (X)

215 results (191ms)   

View Results as: JSON ATOM CSV
thumbnail
Climate change will have sweeping impacts across the Northeast, yet there are key gaps in our understanding about whether species will be able to adapt to this changing environment. Results from this project will illuminate local and region-wide changes in forest ecosystems by studying the red-backed salamander, a species that is a strong indicator of forest conditions. This study identified habitat and forest characteristics that improve the resiliency of forest dwelling amphibians and other wildlife to climate change. Further, by studying a foundational species in forest floor ecosystems, the scientists can use the information to make inferences about rare and declining species. The researchers studied multiple...
thumbnail
Climate and land use change will strongly affect tropical island ecosystems and trust species (like migratory birds and threatened and endangered species). The risks of significant negative impacts are likely to be higher in these island systems than in many temperate regions of the world because of the limited size of their land masses, high numbers of species that only exist in narrowly defined regions, and expectations that tropical environments will experience greater changes in temperature. Tropical island communities are faced with making important decisions related to adaptation that could impact the health of important natural resources and ecosystems. However, a lack of scientific guidance and information...
thumbnail
Coral reefs are some of the most biologically rich and economically valuable ecosystems in the world. They provide food, fishing, and recreation opportunities for millions of people, protect coastlines from storms, and shelter thousands of plant and animal species. However, climate change is contributing to the degradation of coral reefs in two significant ways: warming temperature and increasing acidification of ocean waters. Scientists are actively working to gather more specific information about how these factors will impact coral reef ecosystems. The purpose of this study was to identify differences in climate vulnerability among three important reef-building coral species in the Florida Keys. Researchers...
Abstract (from Springer Link): Species-specific models of landscape capability (LC) can inform landscape conservation design. Landscape capability is “the ability of the landscape to provide the environment […] and the local resources […] needed for survival and reproduction […] in sufficient quantity, quality and accessibility to meet the life history requirements of individuals and local populations.” Landscape capability incorporates species’ life histories, ecologies, and distributions to model habitat for current and future landscapes and climates as a proactive strategy for conservation planning. We tested the ability of a set of LC models to explain variation in point occupancy and abundance for seven bird...
Abstract (from Springer Link): Conservation planning is increasingly using “coarse filters” based on the idea of conserving “nature’s stage”. One such approach is based on ecosystems and the concept of ecological integrity, although myriad ways exist to measure ecological integrity. To describe our ecosystem-based index of ecological integrity (IEI) and its derivative index of ecological impact (ecoImpact), and illustrate their applications for conservation assessment and planning in the northeastern United States. We characterized the biophysical setting of the landscape at the 30 m cell resolution using a parsimonious suite of settings variables. Based on these settings variables and mapped ecosystems, we computed...
Urbanization represents an unintentional global experiment that can provide insights into how species will respond and interact under future global change scenarios. Cities produce many conditions that are predicted to occur widely in the future, such as warmer temperatures, higher carbon dioxide (CO2) concentrations and exacerbated droughts. In using cities as surrogates for global change, it is challenging to disentangle climate variables—such as temperature—from co-occurring or confounding urban variables—such as impervious surface—and then to understand the interactive effects of multiple climate variables on both individual species and species interactions. However, such interactions are also difficult to replicate...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12791/abstract): Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity...
Because microorganisms are sensitive to temperature, ongoing global warming is predicted to influence microbial community structure and function. We used large-scale warming experiments established at two sites near the northern and southern boundaries of US eastern deciduous forests to explore how microbial communities and their function respond to warming at sites with differing climatic regimes. Soil microbial community structure and function responded to warming at the southern but not the northern site. However, changes in microbial community structure and function at the southern site did not result in changes in cellulose decomposition rates. While most global change models rest on the assumption that taxa...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/pce.12790/full): Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9–5.1 °C and increased VPD of 0.5–1.3 kPa on transpiration and stomatal conductance (gs) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt) shifted proportionally with increasing chamber VPD. Warming increased mean water use...
Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and physiological mechanism are needed to convincingly establish climate-induced species shifts. We examine a 38-year shift (1974–2012) in an elevation ecotone between two closely related ant species, Aphaenogaster picea and A. rudis. Even though A. picea and A. rudis are closely related with North American distributions that sometimes overlap, they also exhibit...
Abstract: The consequences of global climate change on aquatic ecosystems are predicted to result from altered intensity, variability, and distribution of precipitation, and more frequent flooding and droughts. In freshwater systems, these changes may result in degradation or loss of habitat due to dry stream beds or low flows, and increased water temperatures, pollution, and erosion. Freshwater mussels (Order Unionida) are especially vulnerable to disturbance because they are incapable of escaping detrimental changes at any practical temporal scale. Quantitative information on lethal temperatures (LT) to native freshwater mussels is currently limited to fewer than 10 species, and these few studies have been restricted...
We modeled the current and future breeding ranges of seven bird and five reptile species in the Southwestern United States with sets of landscape, biotic (plant), and climatic global circulation model (GCM) variables. For modeling purposes, we used PRISM data to characterize the climate of the Western United States between 1980 and 2009 (baseline for birds) and between 1940 and 2009 (baseline for reptiles). In contrast, we used a pre-selected set of GCMs that are known to be good predictors of southwestern climate (five individual and one ensemble GCM), for the A1B emission scenario, to characterize future climatic conditions in three time periods (2010–39; 2040–69; and, 2070–99). Our modeling approach relied on...
Montane regions support distinct animal and plant communities that are widely viewed as communities of high conservation concern due to their significant contribution to regional biodiversity. These communities are also thought to be particularly vulnerable to anthropogenically caused stressors such as climate change, which is generally expected to cause upward shifts and potential range restrictions in montane plant and animal distributions. In the northern Appalachian Mountains of North America, not only is it becoming warmer at mid-elevations but the ecotone between the northern hardwood and the montane coniferous forests is also shifting. Therefore, species that are limited by climate or habitat along the elevational...
thumbnail
Estimates of weather suitability for the occurrence of mortality in whitebark pine from mountain pine beetles as determined from a logistic generalized additive model of the presence of mortality as functions of the number of trees killed last year, the percent whitebark pine in each cell, minimum winter temperature, average fall temperature, avverage April-Aug temperature, and cummulative current and previous year summer precipitation. Analysis done at a 1km grid cell resolution. Weather suitability index calculated by summing the weather terms in the model. Calculated for 2010 through 2099 based on numerous downscaled data under several emissions scenarios. GCMs include: BCC, CanESM, CCSM, CESM, CESM-BGC, CMCC,...
thumbnail
Estimates of weather suitability for the occurrence of mortality in whitebark pine from mountain pine beetles as determined from a logistic generalized additive model of the presence of mortality as functions of the number of trees killed last year, the percent whitebark pine in each cell, minimum winter temperature, average fall temperature, average April - Aug temperature, and cummulative current and previous year summer precipitation. Analysis was done at a 1 km grid cell resolution. Weather suitability index was calculated by summing the weather terms in the model. Calculated for 1991 through 2009 based on 800 meter PRISM weather data. Data are a list of points in comma separated text format. Point coordinates...
thumbnail
Snow conditions are changing dramatically in the mountains of the interior Pacific Northwest, including eastern Washington, northern Idaho, and western Montana. These changes can both benefit and hinder a variety of wildlife species. The timing and extent of seasonal snowpacks, in addition to snow depth, density, and hardness, can impact the ability of wildlife to access forage, their ability to move across the landscape, and their vulnerability to predators, to name a few. In order to respond effectively to changes in snow conditions, wildlife managers need tools to identify areas and promote conditions that maintain late spring and early summer snowpack for some sensitive species. Managers also require an index...
thumbnail
The Monarch’s View of a City project will lay the groundwork for design principles to guide the development, testing and deployment of future urban conservation for the Monarch butterfly across the Eastern half of the country. This strategy will need to reflect an integrated and interdisciplinary approach, one that includes ecological and social dimensions specific to an urban landscape. Pilot design projects at various scales in at least two cities will advance the state of science for developing landscape conservation design (LCD) guidelines for monarch butterfly conservation in urban areas as described below. While the ETPBR LCC, working through US Fish & Wildlife Service staff, will select cities and manage...
thumbnail
This dataset contains the result of the bioclimatic-envelope modeling of nine bird species -- Northern/Masked Bobwhite Quail (Colinus virginianus), Scaled Quail (Callipepla squamata), Pinyon Jay (Gymnorhinus cyanocephalus), Juniper Titmouse (Baeolophus ridgwayi), Mexican Spotted Owl (Strix occidentalis lucida), Cassin’s Sparrow (Peucaea cassinii), Lesser Prairie-Chicken (Tympanuchus pallidicinctus), Montezuma Quail (Cyrtonyx montezumae), and White-tailed Ptarmigan (Lagopus leucurus) -- in the South Central US using the downscaled data provided by WorldClim. We used five species distribution models (SDM) including Generalized Linear Model, Random Forest, Boosted Regression Tree, Maxent, and Multivariate Adaptive...
thumbnail
Natural resource managers are confronted with the pressing challenge to develop conservation plans that address complex ecological and societal needs against the backdrop of a rapidly changing climate. Climate change vulnerability assessments (CCVAs) provide valuable information that helps guide management and conservation actions in this regard. An essential component to CCVAs is understanding adaptive capacity, or the ability of a species to cope with or adjust to climate change. However, adaptive capacity is the least understood and evaluated component of CCVAs. This is largely due to a fundamental need for guidance on how to assess adaptive capacity and incorporate this information into conservation planning...
thumbnail
The USA National Phenology Network (USA-NPN) and the North Central Climate Science Center (NC CSC) seek to enhance scientific understanding of how climate trends and variability are linked to phenology across spatial scales, with the ultimate goal of being able to understand and predict climate impacts on natural resources. A key step towards achieving this long-term goal is connecting local observations (individual plants or animals) of phenology with those at regional to continental scales (10 km to 10,000 km), which may ultimately be used to better understand phenology across ecosystems and landscapes and thereby inform natural resource management. The specific shorter-term goals of this effort are to process...


map background search result map search result map Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals Weather Suitability for the Occurrence of Mortality in Whitebark Pine from Mountain Pine Beetles, 1901-2009, Greater Yellowstone Ecosystem Study Area Understanding the Future of Red-Backed Salamanders as an Indicator of Future Forest Health Climate Change Implications for the Conservation of Amphibians in Tropical Environments Projected future bioclimate-envelope suitability for bird species in South Central USA A Monarch’s View of Urban Landscapes: Pilot City Design Report Weather suitability for mountain pine beetle outbreaks in whitebark pine forests, 2010-2099, Northern Rockies Study Area Estimating the Spatial and Temporal Extent of Snowpack Properties in Complex Terrain: Leveraging Novel Data to Adapt Wildlife and Habitat Management Practices to Climate Change Evaluating Species’ Adaptive Capacity in a Changing Climate: Applications to Natural-Resource Management in the Northwestern U.S. Incorporating USGS Web Cameras into the Phenocam Network to Enhance Scientific Understanding of Phenological Trends and Variability Weather Suitability for the Occurrence of Mortality in Whitebark Pine from Mountain Pine Beetles, 1901-2009, Greater Yellowstone Ecosystem Study Area Projected future bioclimate-envelope suitability for bird species in South Central USA Weather suitability for mountain pine beetle outbreaks in whitebark pine forests, 2010-2099, Northern Rockies Study Area Estimating the Spatial and Temporal Extent of Snowpack Properties in Complex Terrain: Leveraging Novel Data to Adapt Wildlife and Habitat Management Practices to Climate Change Evaluating Species’ Adaptive Capacity in a Changing Climate: Applications to Natural-Resource Management in the Northwestern U.S. Impact of Ocean Warming and Acidification on Growth of Reef-Building Corals A Monarch’s View of Urban Landscapes: Pilot City Design Report Understanding the Future of Red-Backed Salamanders as an Indicator of Future Forest Health Incorporating USGS Web Cameras into the Phenocam Network to Enhance Scientific Understanding of Phenological Trends and Variability