Skip to main content
Advanced Search

Filters: Tags: A1-Fire (X)

51 results (13ms)   

View Results as: JSON ATOM CSV
Wildfires are common in boreal forests around the globe and strongly influence ecosystem processes. However, North American forests support more high-intensity crown fires than Eurasia, where lower-intensity surface fires are common. These two types of fire can result in different net effects on climate as a consequence of their contrasting impacts on terrestrial albedo and carbon stocks. Here we use remote-sensing imagery, climate reanalysis data and forest inventories to evaluate differences in boreal fire dynamics between North America and Eurasia and their key drivers. Eurasian fires were less intense, destroyed less live vegetation, killed fewer trees and generated a smaller negative shortwave forcing. As fire...
Emulation silviculture is the use of silvicultural techniques that try to imitate natural disturbances such as wildfire. Emulation silviculture is becoming increasingly popular in Canada because it may help circumvent the political and environmental difficulties associated with intensive forest harvesting practices. In this review we summarize empirical evidence that illustrates disparities between forest harvesting and wildfire. As a rule, harvesting and wildfire affect biodiversity in different ways, which vary a great deal among ecosystem types, harvesting practices, and scale of disturbance. The scales of disturbance are different in that patch sizes created by logging are a small subset of the range of those...
Emulation silviculture is the use of silvicultural techniques that try to imitate natural disturbances such as wildfire. Emulation silviculture is becoming increasingly popular in Canada because it may help circumvent the political and environmental difficulties associated with intensive forest harvesting practices. In this review we summarize empirical evidence that illustrates disparities between forest harvesting and wildfire. As a rule, harvesting and wildfire affect biodiversity in different ways, which vary a great deal among ecosystem types, harvesting practices, and scale of disturbance. The scales of disturbance are different in that patch sizes created by logging are a small subset of the range of those...
We conducted this investigation in response to criticisms that the current Alaska Interagency Fire Management Plans are allowing too much of the landscape in interior Alaska to burn annually. To address this issue, we analyzed fire history patterns within the Yukon Flats National Wildlife Refuge, interior Alaska. We dated 40 fires on 27 landscape points within the refuge boundaries using standard dendrochorological methods. Fire return intervals based on tree ring data ranged from 37 to 166 years (mean=90±32 years; N =38) over the 250 year time frame covered by this study. We found no significant differences in the frequency of fire occurence over time. There was no evidence to suggest that changes in fire management...
Sustainable resource management depends upon the participation of resource-dependent communities. Competing values between community members and government agencies and among groups within a community can make it difficult to find mutually acceptable management goals and can disadvantage certain resource users. This study uses Q-methodology to discover groups with shared perspectives on wildfire policy in the Koyukon Athabascan villages of Galena and Huslia, Alaska. Before the study, participants appeared to disagree over the amount of wildfire suppression needed, but Q-method results showed three perspectives united around deeper, less oppositional concerns: Caucasian residents and resource managers who preferred...
Wildfires are common in boreal forests around the globe and strongly influence ecosystem processes. However, North American forests support more high-intensity crown fires than Eurasia, where lower-intensity surface fires are common. These two types of fire can result in different net effects on climate as a consequence of their contrasting impacts on terrestrial albedo and carbon stocks. Here we use remote-sensing imagery, climate reanalysis data and forest inventories to evaluate differences in boreal fire dynamics between North America and Eurasia and their key drivers. Eurasian fires were less intense, destroyed less live vegetation, killed fewer trees and generated a smaller negative shortwave forcing. As fire...