Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: ANSS (X)

9 results (7ms)   

View Results as: JSON ATOM CSV
thumbnail
ShakeMap is a product of the USGS Earthquake Hazards Program in conjunction with the regional seismic networks. ShakeMaps provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. These maps are used by federal, state, and local organizations, both public and private, for post-earthquake response and recovery, public and scientific information, as well as for preparedness exercises and disaster planning.
thumbnail
The NEIC global earthquake bulletin is called the Preliminary Determination of Epicenters or PDE, and is one of many discrete products in the ANSS Comprehensive Catalog (ComCat). We use the word "Preliminary" for our final bulletin because the Bulletin of the International Seismological Centre is considered to be the final global archive of parametric earthquake data, in other words phase arrival (“pick”) times and amplitudes.
thumbnail
EXPO-CAT is a catalog of human exposure to discrete levels of shaking intensity, obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. EXPO-CAT is derived from two key datasets: the PAGER-CAT earthquake catalog and the Atlas of ShakeMaps. PAGER-CAT provides accurate earthquake source information necessary to compute reliable ShakeMaps in the Atlas. It also contributes loss information (i.e., number of deaths and injuries) from historical events. Using historical earthquakes in the Atlas and...
thumbnail
A Finite Fault is a modeled representation of the spatial extent, amplitude and duration of fault rupture (slip) of an earthquake, and is generated via the inversion of teleseismic body waveforms and long period surface waves. It may indicate that a location of major fault-slip and source of seismic energy has occurred at a significant distance from the earthquake epicenter, which is the location on the fault where the earthquake rupture nucleated. For many earthquakes, the preferred model represents the distribution of slip on one of the two alternative fault-planes that are implied by the earthquake moment-tensor. For some earthquakes, the seismographic data are fit equally well by models involving slip on either...
thumbnail
The DYFI system collects observations from people who felt an earthquake and then maps out the extent of shaking and damage they reported. The ComCat online Search interface allows users to select query criteria that return events with DYFI data and products.
thumbnail
The ANSS Comprehensive Catalog (ComCat) contains earthquake source parameters and other products produced by contributing seismic networks. Important digital catalogs of earthquake source parameters (e.g. Centennial Catalog, Global Centroid Moment Tensor Catalog) are loaded into ComCat. New and updated data are added to the catalog dynamically as sources publish or update products. Access to the ComCat is via the online search page, on which a user can select a wide variety of criteria to locate earthquake events of interest. Source Parameters: -amplitude - hypocenter - magnitude - phase data - finite fault - focal mechanism - moment tensor - tectonic summary - regional information Products: - Did You Feel It? -...
thumbnail
The ANSS Backbone Network is based on the core of the original US National Seismic Network. In partnership with the National Science Foundation, the USGS worked with the Earthscope program (through the USArray project and IRIS) in 2004-2006 to upgrade and install new backbone stations. This effort was completed in September 2006, with 15 new stations installed and 20 existing stations upgraded. Today, the ANSS Backbone consists of nearly 100 stations in the United States, many of them contributed by partner networks and organizations.
thumbnail
PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that estimates the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each estimated shaking intensity level with models of economic and fatality losses based on past earthquakes in each country or region of the world. PAGER sends out alerts based on the estimated range of fatalities and economic losses.
thumbnail
PAGER-CAT incorporates eight global earthquake catalogs and additional auxiliary data to provide comprehensive information for hypocentral locations, magnitudes, and human fatalities, focal mechanisms, the country of origin or the distance to the nearest landmass, local time and day of week, presence of secondary effects (e.g., tsunami, landslide, fire, or liquefaction) and deaths caused by these effects, the number of buildings damaged or destroyed, and the number of people injured or left homeless. The first version of the catalog contains more than 140 fields in which detailed event information can be recorded and currently includes events from 1900 through December 2007, with emphasis on earthquakes since 1973.