Skip to main content
Advanced Search

Filters: Tags: Accountability (X) > Types: OGC WMS Layer (X)

24 results (67ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Description of Work USGS will conduct seasonal sampling of benthic invertebrates, zooplankton, prey fish, and their diets to complement the seasonal lower trophic level sampling by EPA. A point of emphasis is describing the vertical distribution of planktivores and their zooplankton prey, to fill a knowledge gap on these predator/prey interactions. These data will provide a more holistic understanding of how invasive-driven, food-web changes could be altering energy available to sport fishes in the Great Lakes and used to build bioenergetics models that can evaluate whether zooplankton dynamics are being driven by limited resources or excessive predation. Understanding the key drivers of zooplankton will provide...
thumbnail
Description of Work USGS will conduct monthly samples of benthic invertebrates, zooplankton, and water quality as well as seasonal sampling of fish and fish diets. This project supports lower trophic sampling in Lake Erie and understanding food webs. An emphasis will be collecting samples from a nearshore to offshore design.
thumbnail
Description of Work U.S. Geological Survey (USGS) will provide easily accessible, centrally located, USGS biological, water resources, geological, and geospatial datasets for Great Lakes basin restoration activities coordinated with GLOS. Managers, partners and the public will be able to readily access this information in usable interactive formats to help plan and implement restoration activities. Building tools and infrastructure to support standard data access, efficient data discovery and dynamic mapping of watersheds and their hydrologic properties. Developing decision support tools to enhance scientific investigation or disseminate project findings, for example integrating hydrologic models with real-time...
thumbnail
Description of Work To date many meetings have been attended and coalitions developed between USGS Water Mission area and NYSDEC and EPA region 2 which have spun off into several other monitoring and BUI delisting projects funded by Region 2 through the USGS/EPA IA. This has been a perfect example of leveraging USGS GLRI funds to develop additional GLRI-related program for the Lake Ontario LaMP partners, especially for tributary nutrient and sediment loading to Lake Ontario and helping collect and assess the data needed to remove BUI impairments at the Rochester Embayment and St. Lawrence/Massena AOCs for benthos and phytoplankton impairments.
thumbnail
Description of Work Participation on the Lake Erie Lakewide Management Plan Workgroup and related subcommittees such as toxics, sources and loads, nutrients, and biodiversity. Attend meetings and conferences associated with LE LAMP activities. This includes The Lake Erie Millennium Network, CSMI, Ohio Phosphorus Task Force, and other meetings or workshops addressing nutrient and toxicity issues in Lake Erie. Communicate USGS activities in the Lake Erie Basin that can influence understanding or impact decision making.
thumbnail
This study area consists of a 10-km inland buffer of the U. S. Great Lakes shoreline. Islands within the lakes were included in this invasive Phragmites mapping project where remotely sensed imagery scenes were available.
thumbnail
Description of Work USGS scientists will support EPA's year of intensive sampling around the Great Lakes to complement and expand upon EPA and other partner entities work. In 2013, on Lake Ontario USGS will sample the food web from a nearshore (20 m) to offshore (100 m) gradient where seasonal sampling of primary producers, benthic invertebrates, zooplankton, prey fish, sport fish, and their diets will occur. We will work closely with state management agencies and stakeholder groups to ensure that ecosystem models that emerge from this work explore relevant future management scenarios. Scientists will analyze the diets of the six species of trout and salmon currently occurring in Lake Ontario. This predator diet...
thumbnail
These files were used to construct corridors estimating the extent of new coastal corridors exposed by reduced lake levels. They are included here to show the available horizontal extent of lidar-derived topo-bathymetric data and thus explicitly identify gaps and limitations of predicted corridor extents under various reduced lake level scenarios. In addition, these files provide users with a background layer that depicts the topographic variability of the submerged near-shore lake bed and terrestrial landscape.These files are 5m grid representations of the hydrographic and topographic data collected by the CHARTS system along the coasts of the U.S. sides of Lake Michigan, Lake Huron, Lake St. Clair, Lake Erie,...
thumbnail
Description of Work In 2011, the US EPA, USGS, and Canada’s DFO/EC continued the evolution of the strategy to conduct an “integrated’ (water quality to fish) spatially-consistent assessment for the entire lake in order to provide biomass estimates for each trophic level. A total of 54 sites were sampled during summer 2011. Water chemistry, nutrients, phytoplankton, zooplankton, benthic invertebrates, Mysis, and pelagic and benthic fish were collected at each site.
thumbnail
Description of Work USGS scientists provide expertise, capacity and support for the implementation of Lakewide Management Plans (LaMPs) and the associated goals, objectives and targets for each of the Great Lakes, including Lake Superior. The LaMPs are critical binational groups that are important for promoting Great Lakes restoration. Specifically, LaMP efforts include compiling monitoring and research information into the Great Lakes web mapper (SiGL Mapper). The Mapper’s focus is on information that will result in recognition of areas where data are being collected, missing or sparse, and on areas where ecosystems are vulnerable.
thumbnail
Description of Work U.S. Geological Survey (USGS) will expand the online availability of geospatial data to monitor the presence and extent of invasive species in wetlands, coastal areas and other sensitive habitats. USGS is working with the Great Lakes Observing System collaboration and other data sharing efforts across the Great Lakes to compile the data into a user friendly format that is accessible on line. Elevation data will be expanded in the Great Lakes Basin using a collaborative to support the GLRI. This information would support invasive species monitoring, wetland inventory, and habitat restoration. USGS will work with the Great Lakes Observing System and other data sharing efforts to make USGS geospatial...
thumbnail
Maps of areas greater than 0.2 hectare (0.5 acre) dominated by invasive Phragmites australis were created for the coastal region (shoreline to 10 km inland) of the United States side the Great Lakes and connecting water ways. The maps were developed using unsupervised/supervised classification methods and ground truth data collected during 2010 and 2011 in conjunction with multi-season ALOS PALSAR imagery (for the remote sensing-based iterative classification process), as well as through the interpretation of aerial photography to reduce classification confusion. Overall classification accuracy compared to field data for mapping was approximately 86%.
thumbnail
Description of Work The GLRI Rivermouths Project (template 82) is designed to enhance our understanding of how rivermouths function at both regional and local scales by 1) developing a rivermouth classification system, based on a broad scale database covering all Great Lakes rivermouths (>2000); 2) creating a science-based understanding of how the ecological structure and function of rivermouths are linked both to the landscapes they drain and to the Lakes with which they mix; and 3) increasing the public and scientific profile of these ecosystems by connecting researchers and natural resource managers through a collaborative dialog. The long-term goal is to provide enhanced guidance for restoration and rehabilitation...
thumbnail
Description of Work U.S. Geological Survey (USGS) will develop and provide forecasting tools for managers to determine how water withdrawals or other hydrologic or land use changes in watersheds may affect Great Lakes ecosystems. This information will help guide restoration efforts to achieve maximum effectiveness and success. Project provides unified information across the Great Lakes Basin for ecosystem restoration, assessment, and management by incorporating models that relate changes in landscape and hydrologic variables and stresses to changes in ecosystem function. The project relies upon regionally consistent hydrologic, biologic, and geospatial data to generate regionally consistent estimates, models, and...
thumbnail
This network of inland streams, wetlands and water bodies is a composite of two layers from the National Hydrography Dataset Plus (NHD+ flow lines and water bodies), and all available wetlands from the National Wetlands Inventory (NWI) and Wisconsin Wetlands Inventory (WWI). In combination, these layers provide a network template of inland corridors for assessing relative vulnerability to future invasions of Phragmites.
thumbnail
These data represent coastal corridors exposed by lake levels reduced from mean 2009 water surface elevations. These elevations were established by values published by the United States Army Corps of Engineers (USACE), and based on a network of multiple gages within each lake. The corridors were derived from two data sources: 5-m resolution lidar-based topo-bathymetry produced by the USACE Joint Airborne Lidar-Based Technical Center of eXpertise (JALBTCX) and the National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, and bathymetric contour lines produced by the NOAA Great Lakes Environmental Research Laboratory (GLERL). The JALBTCX lidar-based topo-bathymetry were used to produce representations...
thumbnail
Description of Work USGS scientists are developing science based forecasting tools that capture changes to water flows and discharges of nutrients and sediments to the Great Lakes. The work done by this project provides managers with forecasting tools for predicting the combined effects of climate and land use changes that will help them identify and prioritize the sites best suited for restoration efforts. USGS scientists will use remote-sensing data to establish a baseline understanding of current distributions of invasive wetland plants and then forecast potential invasion corridors. Alterations to the Great Lakes shoreline or water-level patterns associated with global climate change could have significant impacts...
thumbnail
Habitat suitability was estimated for invasive Phragmites in the coastal Great Lakes region (shoreline to 10 km inland). These estimates were based on current distribution patterns and environmental conditions. Phragmites presence or absence was defined based on a distribution map produced by cooperative research between the GLSC and Michigan Technical Research Institute. Environmental variables were processed in a Geographic Information System (GIS) and came from existing publicly available sources. Variables include descriptors of soils, nutrients, topography, ecoregion, anthropogenic disturbance, and climate. Environmental conditions and Phragmites presence/absence were sampled in a GIS at points established...
thumbnail
Description of Work Since the early 2000s, the LaMP has proposed adding nutrients (specifically phosphorus) to its “pollutant of concern” list, given that excessive nutrients were believed to cause impairments in the nearshore waters. Since that time, scientists have highlighted the “shunting” of nutrients to the nearshore, owing to the ability of invasive dreissenid mussels to capture some portion of allochthanous phosphorus that enters the lake through tributaries. These changes are believed to underlie a series of changes in the nearshore, including increased biomass of cladophora and hypothesized increases in benthic and pelagic biomass, including zooplankton and fish. As an extension, this model proposes the...


map background search result map search result map Inland Coastal Zone Corridor Network and Vulnerability to Invasive Phragmites Phragmites Habitat Suitability Lidar Topo-Bathymetry Coastal Corridors Vulnerable Under Reduced Lake Level Scenarios Invasive Phragmites Stands Forecasting Potential Phragmites Coastal Invasion Corridors Study Area Extent Watershed modeling for stream ecosystem management Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ERIE Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ONTARIO Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE HURON Geospatial Information for decision support in AOCs and ecosystems Enabling Discovery and Access to USGS Great Lakes Scientific Data Through Web-Based Applications Lake Ontario Component - Exploring changes in nutrient transfer within Great Lakes food webs: implications for fish production Cooperative Science and Monitoring Initiative (CSMI) - LAKE HURON Cooperative Science and Monitoring Initiative (CSMI) - LAKE ERIE Forecasting Great Lakes Basin Responses to Future Change Characterizing Rivermouth Ecosystems Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE SUPERIOR Exploring nearshore-offshore linkages in energy transfer within Great Lakes food webs: implications for fish production in Lake Michigan in support of CSMI 2015 Cooperative Science and Monitoring Initiative (CSMI) - LAKE SUPERIOR Lake Ontario Component - Exploring changes in nutrient transfer within Great Lakes food webs: implications for fish production Geospatial Information for decision support in AOCs and ecosystems Cooperative Science and Monitoring Initiative (CSMI) - LAKE ERIE Forecasting Great Lakes Basin Responses to Future Change Cooperative Science and Monitoring Initiative (CSMI) - LAKE HURON Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ONTARIO Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE ERIE Exploring nearshore-offshore linkages in energy transfer within Great Lakes food webs: implications for fish production in Lake Michigan in support of CSMI 2015 Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE HURON Lakewide Management Plan Capacity Support by U.S. Geological Survey - LAKE SUPERIOR Cooperative Science and Monitoring Initiative (CSMI) - LAKE SUPERIOR Lidar Topo-Bathymetry Invasive Phragmites Stands Enabling Discovery and Access to USGS Great Lakes Scientific Data Through Web-Based Applications Coastal Corridors Vulnerable Under Reduced Lake Level Scenarios Inland Coastal Zone Corridor Network and Vulnerability to Invasive Phragmites Phragmites Habitat Suitability Forecasting Potential Phragmites Coastal Invasion Corridors Study Area Extent Watershed modeling for stream ecosystem management Characterizing Rivermouth Ecosystems