Skip to main content
Advanced Search

Filters: Tags: Ammonium (X) > Categories: Publication (X)

13 results (56ms)   

View Results as: JSON ATOM CSV
As an estimate of species-level differences in the capacity to take up different forms of N, we measured plant uptake of 15N-NH4+, 15N-NO3- and 15N, [1]-13C glycine within a set of herbaceous species collected from three alpine community types. Plants grown from cuttings in the greenhouse showed similar growth responses to the three forms of N but varied in the capacity to take up NH4+, NO3- and glycine. Glycine uptake ranged from approximately 42% to greater than 100% of NH4+ uptake; however, four out of nine species showed significantly greater uptake of either NH4+ or NO3- than of glycine. Relative concentrations of exchangeable N at the sites of plant collection did not correspond with patterns of N uptake among...
Recent evidence associates the persistence of invasive plant species with disturbance and fluctuations in distinct forms of mineral N in soils. We conducted soil and hydroponic experiments to investigate the influence of N form and availability on germination and seedling development of 2 invasive annual grasses, cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae) and 6 perennial grasses, bluebunch wheatgrass (Pseudoroegneria spicata), crested wheatgrass (Agropyron cristatum x A. desertorum), Sand Hollow and Seaman?s Gulch big squirreltail (Elymus multisetus), and Little Camas and Little Wood bottlebrush squirreltail (E. elymoides ssp. brevifolius and E. elymoides ssp. elymoides, respectively)....
Freeze–thaw cycles can promote soil N losses as a result of microbial and root cell lysis; however, minimal freeze–thaw effects have typically been observed in studies that have imposed moderate temperature cycles. We conducted laboratory incubations on surface soil (top 3 cm) collected in a temperate old field from late fall through mid-winter to examine how variation in freeze–thaw amplitude, number, timing of collection, and freezing rate altered soil extractable N. We varied freeze–thaw amplitude by imposing minimum cycle temperatures of 0, −1, −2, −5, and −10°C for a series of either one or two cycles and held control samples constant at 3°C. We also examined the effects of freezing rates of 1, 3, and 30°C...
Freeze–thaw cycles can promote soil N losses as a result of microbial and root cell lysis; however, minimal freeze–thaw effects have typically been observed in studies that have imposed moderate temperature cycles. We conducted laboratory incubations on surface soil (top 3 cm) collected in a temperate old field from late fall through mid-winter to examine how variation in freeze–thaw amplitude, number, timing of collection, and freezing rate altered soil extractable N. We varied freeze–thaw amplitude by imposing minimum cycle temperatures of 0, −1, −2, −5, and −10°C for a series of either one or two cycles and held control samples constant at 3°C. We also examined the effects of freezing rates...
Ammonium (NH4 +) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4 + movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4 + distribution; isotopic analyses of coexisting aqueous NH4 +, NO3 −, N2, and sorbed NH4 +; and in situ natural gradient 15NH4 + tracer tests with numerical simulations of 15NH4 +, 15NO3 −, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4 + was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the...
Ammonium (NH4 +) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4 + movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4 + distribution; isotopic analyses of coexisting aqueous NH4 +, NO3 −, N2, and sorbed NH4 +; and in situ natural gradient 15NH4 + tracer tests with numerical simulations of 15NH4 +, 15NO3 −, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4 + was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the...
Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O2 (> 300 µM) and NH4+ (51–800 µM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O2, NH4+, and NO3− (0–300, 0–500, and 100–200 µM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both...
Volume-weighted mean concentrations of nitrate (NO3?), ammonium (NH4+), and sulfate (SO42?) in precipitation were compared at high-elevation sites in Colorado from 1992 to 1997 to evaluate emission source areas to the east and west of the Rocky Mountains. Precipitation chemistry was measured by two sampling methods, the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and snowpack surveys at maximum accumulation. Concentrations of NO3? and SO42? in winter precipitation were greater on the western slope of the Rockies, and concentrations of NO3? and NH4+ in summer precipitation were greater on the eastern slope. Summer concentrations in general were almost twice as high as winter concentrations....
Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50 m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300 µM). After 300 m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct...
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and...
Nitrogen translocation was measured in Cladonia portentosa during 2 yr growth in Scottish heathland. Translocation was predicted to occur if N is resorbed from senescent basal tissue and recycled within the thallus. (15)N was introduced into either the lower (TU thalli) or upper (TD thalli) 25 mm of 50-mm-long thalli as (15)N-NH(4) (+), (15)N-NO(3) (-) or (15)N-glycine. Labelled thalli were placed within intact lichen cushions, either upright (TU) or inverted (TD). Vertical distribution of label was quantified immediately following labelling and after 1 and 2 yr. Independently of the form of introduced label, (15)N migrated upwards in TU thalli, with new growth being a strong sink. Sink regions for (15)N during...
thumbnail
We explored the seasonal characteristics in wet deposition chemistry for two sites located at different elevations along the east slope of the Colorado Front Range in Rocky Mountain National Park. Seasonally separated precipitation was stratified into highly concentrated (high salt), dilute (low salt), or acid-dominated precipitation groups. These groups and unstratified precipitation data were related to mean easterly or westerly zonal winds to determine direction of local transport. Strong acid anion associations were also determined for the stratified and unstratified precipitation data sets. We found that strong acid anions, acidity, ammonium, and high salt concentrations originate to the east of Rocky Mountain...
The biogeochemistry at the interface between sediments in a seasonally ponded wetland (slough) and an alluvial aquifer contaminated with landfill leachate was investigated to evaluate factors that can effect natural attenuation of landfill leachate contaminants in areas of groundwater/surface-water interaction. The biogeochemistry at the wetland-alluvial aquifer interface differed greatly between dry and wet conditions. During dry conditions (low water table), vertically upward discharge was focused at the center of the slough from the fringe of a landfill-derived ammonium plume in the underlying aquifer, resulting in transport of relatively low concentrations of ammonium to the slough sediments with dilution and...


    map background search result map search result map The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, U.S.A. The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, U.S.A.