Skip to main content
Advanced Search

Filters: Tags: Bathymetry (X)

1,121 results (62ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset is comprised of three files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (LiDAR) data representing beach topography and sonar data representing near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The point data is the same as that in LAS (industry-standard binary format for storing large point clouds) files that were used to create a digital elevation model (DEM) of the approximately 5.9 square kilometer (2.3 square mile) surveyed area. LiDAR data were collected August 10, 2019 using a boat-mounted Optech ILRIS scanner and methodology similar to that described by Huizinga and Wagner (2019). Multi-beam sonar data were collected...
thumbnail
Bathymetric survey data of the Brandon Road Dam spillway was collected on May 27 and May 28, 2015 by the US Geological Survey (USGS) using Trimble Real-Time Kinematic Global Positioning System (RTK-GPS) equipment. The base station was set up over a temporarily installed survey pin on both days. This pin was surveyed into an existing NGS benchmark (PID: BBCN12) within the Brandon Road Lock property. In wadeable sections, a GPS rover with 2.0 meter range pole and flat-foot was deployed. In sections unable to be waded, a 2.0 meter range pole was fix-mounted to a jon boat, and a boat-mounted Acoustic Doppler Current Profiler (ADCP) was used to collect the depth data. ADCP depth data were reviewed in the WinRiver II...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
Staff from Alaska Earthquake Center, Geophysical Institute and Alaska Division of Geological & Geophysical Surveys evaluated potential tsunami hazards for the city of Sand Point, on Popof Island in the Shumagin Islands archipelago. We numerically modeled the extent of inundation from tsunami waves generated by local and distant earthquake sources. We considered the results in light of historical observations. The worst-case scenarios are defined by analyzing results of the sensitivity study of the tsunami dynamics with respect to different slip distributions along the Aleutian megathrust. For the Sand Point area, the worst-case scenarios are thought to be thrust earthquakes in the Shumagin Islands region with magnitudes...
thumbnail
These data are bathymetry (river bottom elevation) in XYZ format, generated from the March 29-30, 2017 and April 13, 2017, bathymetric survey of the East Fork White River at Columbus, Indiana. The bathymetry was collected from approximately the confluence of Driftwood and Flatrock rivers, downstream to the confluence of Haw Creek. Hydrographic data were collected using an acoustic Doppler current profiler (ADCP) with integrated Differential Global Positioning System (DGPS). Data were collected as the surveying vessel traversed the river, approximately perpendicular to the velocity vectors at 55 cross sections which were spaced 200 feet apart along the river. Additional cross sections were collected upstream and...
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
From 2013 to 2015, bathymetric surveys of New York City’s six West of Hudson reservoirs (Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie) were performed to provide updated capacity tables and bathymetric maps. Depths were surveyed with a single-beam echo sounder and real-time kinematic global positioning system (RTK-GPS) along planned transects at predetermined intervals for each reservoir. A separate set of echo sounder data was collected along transects at oblique angles to the main transects for accuracy assessment. Field survey data was combined with water-surface elevations in a geographic information system to create three-dimensional surfaces representing reservoir-bed elevations in the...
thumbnail
Field measurements of various optical properties of the water column were acquired from a single location on the Kootenai River in northern Idaho, September 26-27, 2017, to support research on remote sensing of rivers, particularly estimation of water depth from passive optical image data. The field measurements included in this data release include several parameters measured with three different instruments. A WetLabs EcoTriplet multi-probe was used to measure the volume scattering coefficient (Beta) at 700 nm, the back-scattering coefficient (b_b) at 700 nm, chlorophyll concentration, colored dissolved organic matter (CDOM) concentration, and turbidity. A Sequoia Scientific LISST-100X was used to measure the...
Nearshore bathymetry is a vital link that joins offshore water depths to coastal topography. Seamless water depth information is a critical input parameter for reliable storm surge models, enables the calculation of sediment budgets and is necessary baseline data for a range of coastal management decisions. Funding from the Western Alaska LCC resulted in the purchase of field equipment capable of shallow water measurements in rural settings, allowing collection of nearshore bathymetry around western Alaska communities. The resulting vector data shape files of nearshore bathymetry for Gambell, Savoonga, Golovin, Wales, Shismaref, and Hooper Bay are available by following the link below.
thumbnail
High resolution bathymetric, sea-floor backscatter, and seismic-reflection data were collected offshore of southeastern Louisiana aboard the research vessel Point Sur on May 19-26, 2017, in an effort to characterize mudflow hazards on the Mississippi River Delta front. As the initial field program of a research cooperative between the U.S. Geological Survey, the Bureau of Ocean Energy Management, and other Federal and academic partners, the primary objective of this cruise was to assess the suitability of sea-floor mapping and shallow subsurface imaging tools in the challenging environmental conditions found across delta fronts (for example, variably distributed water column stratification and widespread biogenic...
thumbnail
Sugar Creek Lake is located approximately 4 miles northwest of Moberly, Missouri, in Randolph County, and has a full-pool surface area of approximately 330 acres. The lake primarily is used for recreation and drinking-water supply for the town of Moberly, Missouri. An earthen dam approximately 38-feet high and 1,125-feet long was constructed across the Sugar Creek valley in 1922. The elevation of the top of the dam is approximately 754 feet, with a 90-feet wide concrete spillway located near the right bank (west end) at an elevation of 746.8 feet. A previous bathymetric survey was completed in 2003. In cooperation with the Missouri Department of Natural Resources, the U.S. Geological Survey resurveyed the bathymetry...


map background search result map search result map Bathymetric survey of the Brandon Road Dam Spillway, Joliet, Illinois Geospatial Bathymetry Dataset and Elevation-Area-Capacity Table for Neversink Reservoir, 2014 Elevation Contours, Cannonsville Reservoir, 2015 Elevation-area-capacity table, Cannonsville Reservoir, 2015 Echosounder Quality Assurance Points, Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Rondout Reservoir, 2013 to 2014 Elevation Raster, Cannonsville Reservoir, 2015 Elevation TIN, Neversink Reservoir, 2014 Bathymetry on the East Fork White River at Columbus, Indiana, March 29-30 and April 13, 2017 Tsunami inundation maps for the city of Sand Point, Alaska High-resolution geophysical data collected along the Mississippi River Delta front offshore of southeastern Louisiana, U.S. Geological Survey Field Activity 2017-003-FA Multibeam Echosounder, Reson T-20P tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84) Field measurements of water column optical properties from the Kootenai River in northern Idaho, September 26-27, 2017, and similar data from several other rivers Bathymetric and supporting data for Sugar Creek Lake near Moberly, Missouri, 2018 XYZ files of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Bathymetric survey of the Brandon Road Dam Spillway, Joliet, Illinois Bathymetry on the East Fork White River at Columbus, Indiana, March 29-30 and April 13, 2017 Bathymetric and supporting data for Sugar Creek Lake near Moberly, Missouri, 2018 XYZ files of LiDAR and sonar data collected at Lake Superior at Minnesota Point, Duluth, MN, August 2019 Geospatial Bathymetry Dataset and Elevation-Area-Capacity Table for Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Neversink Reservoir, 2014 Elevation TIN, Neversink Reservoir, 2014 Echosounder Quality Assurance Points, Rondout Reservoir, 2013 to 2014 Tsunami inundation maps for the city of Sand Point, Alaska Multibeam Echosounder, Reson T-20P tracklines, USGS field activity 2017-003-FA, Mississippi River Delta front offshore of southeastern Louisiana (Esri polyline shapefile, GCS WGS 84) High-resolution geophysical data collected along the Mississippi River Delta front offshore of southeastern Louisiana, U.S. Geological Survey Field Activity 2017-003-FA