Skip to main content
Advanced Search

Filters: Tags: Benthos (X) > partyWithName: Jenny L Hanson (X)

16 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. This information is highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment and Natural...
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.


    map background search result map search result map Mississippi National River and Recreation Area, Substrate Characterization of the Mississippi River near Hidden Falls, MN, 2019 St. Croix National Scenic Riverway, Substrate Characterization of the St. Croix River near Hudson, WI, 2018 St. Croix National Scenic Riverway, Substrate Characterization of the St. Croix River near Prescott, WI, 2018 Illinois River, Peoria Side Channel - Chillicothe Slough, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Clark Slough, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Hennepin Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Henry Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Plum Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands-North, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands-South, Multibeam Sidescan Image Mosaic, September 2019 Illinois River Habitat Mapping - Marseilles Substrate Characterization and Supporting Bathymetric Derivatives Illinois River Habitat Mapping - Dresden Substrate Characterization, 2020 Illinois River Habitat Mapping - Marseilles Pool Substrate Characterization, 2020 Illinois River Habitat Mapping - Starved Rock Substrate Characterization and Supporting Bathymetric Derivatives Illinois River Habitat Mapping - Starved Rock Substrate Characterization, 2020 Illinois River Habitat Mapping - Brandon Pool Substrate Characterization, 2020 Illinois River, Peoria Side Channel - Upper Twin Islands-South, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands-North, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Clark Slough, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Hennepin Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Plum Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Henry Island, Multibeam Sidescan Image Mosaic, September 2019 Mississippi National River and Recreation Area, Substrate Characterization of the Mississippi River near Hidden Falls, MN, 2019 Illinois River Habitat Mapping - Brandon Pool Substrate Characterization, 2020 Illinois River Habitat Mapping - Starved Rock Substrate Characterization and Supporting Bathymetric Derivatives Illinois River Habitat Mapping - Starved Rock Substrate Characterization, 2020 Illinois River Habitat Mapping - Dresden Substrate Characterization, 2020 Illinois River Habitat Mapping - Marseilles Substrate Characterization and Supporting Bathymetric Derivatives Illinois River Habitat Mapping - Marseilles Pool Substrate Characterization, 2020