Skip to main content
Advanced Search

Filters: Tags: Brackish Marsh (X)

11 results (95ms)   

View Results as: JSON ATOM CSV
thumbnail
Accurate input data are important for making site-specific projections of tidal wetlands into the future. We developed bias-corrected digital elevation models (DEM) using the LEAN approach (LiDAR Elevation Adjustment with NDVI). LEAN DEMs were used as the initial elevation for model projections. Further, we conducted elevation and vegetation surveys across each study site to characterize elevation profiles of dominant species, which were used to inform organic productivity functions in WARMER-2.
thumbnail
This dataset consists of raster geotiff outputs from modeling vertical accretion and carbon accumulation in the Nisqually River Delta, Washington, USA. These rasters represent projections of future habitat type, change in surface elevation above Mean Sea Level, and total sediment carbon accumulation since 2011 in coastal wetland habitats. Projections were generated in 20-year increments for 100 years for five amounts of sea-level rise, three amounts of suspended sediment concentrations, and two alternative configurations of the U.S. Interstate-5 causeway as it crosses the Nisqually River to either prevent or allow inland habitat migration (a total of 30 scenarios). The full methods and results are described in detail...
thumbnail
2010 Landsat TM satellite imagery was analyzed to develop the KIRA predicted relative abundance model. Three parameters were used in the model : (1) mean open water (MOW) at a 180 m scale, (2) mean spring normalized difference vegetation index (NVDI) at a 180 m scale, and (3) coefficient of variation (CV) of spring modified normailized difference water index (MNDWI) at a 1 km scale. Model output was divided into 5 quantiles for display purposes and to aid interpretation. King Rail inhabit marshes in the fresh-to-intermediate salinity range. Using the KIRA predicted relative abundance modeled parameters, the GCJV identified areas of brackish marsh that exhibited high quality vegetative structure within 1 km (approximate...
thumbnail
Understanding the rates and patterns of tidal wetland elevation changes relative to sea-level is essential for understanding the extent of potential wetland loss over the coming years. Using an enhanced and more flexible modeling framework of an ecosystem model (WARMER-2), we explored sea-level rise (SLR) impacts on wetland elevations and carbon sequestration rates through 2100 by considering plant community transitions, salinity effects on productivity, and changes in sediment availability. We incorporated local experimental results for plant productivity relative to inundation and salinity into a species transition model, as well as site-level estimates of organic matter decomposition. The revised modeling framework...
thumbnail
Habitat projections from the WARMER-2 model for four tidal wetland sites in San Francisco Bay estuary under the constant sediment scenario, plus 0.2 ppt per decade salinity scenario, and the community transition organic productivity function under a 99 cm by 2100 sea-level rise scenario. Results are the average from one hundred Monte Carlo simulations.
thumbnail
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here we present measurements of net ecosystem exchange of carbon dioxide (CO2) and methane, along...
thumbnail
This data release consists of vegetation cover, soil surface elevation (also called vertical land motion of the wetland (VLMw)), and vertical accretion data collected over 23 months beginning in May 2001 in a restored brackish marsh in southeast Louisiana, USA. Vegetation cover was estimated in permanent plots, and soil cores were collected for determination of bulk density, organic matter content and texture. VLMw was measured using rod surface elevation tables, while accretion was measured using feldspar marker horizons (i.e., RSET-MH technique).
thumbnail
This dataset consists of raster geotiff outputs from modeling vertical accretion and carbon accumulation in the Nisqually River Delta, Washington, USA. These rasters represent projections of future habitat type, change in surface elevation above Mean Sea Level, and total sediment carbon accumulation since 2011 in coastal wetland habitats. Projections were generated in 20-year increments for 100 years for five amounts of sea-level rise, three amounts of suspended sediment concentrations, and two alternative configurations of the U.S. Interstate-5 causeway as it crosses the Nisqually River to either prevent or allow inland habitat migration (a total of 30 scenarios). The full methods and results are described in detail...
thumbnail
This dataset consists of raster geotiff outputs from modeling vertical accretion and carbon accumulation in the Nisqually River Delta, Washington, USA. These rasters represent projections of future habitat type, change in surface elevation above Mean Sea Level, and total sediment carbon accumulation since 2011 in coastal wetland habitats. Projections were generated in 20-year increments for 100 years for five amounts of sea-level rise, three amounts of suspended sediment concentrations, and two alternative configurations of the U.S. Interstate-5 causeway as it crosses the Nisqually River to either prevent or allow inland habitat migration (a total of 30 scenarios). The full methods and results are described in detail...
thumbnail
Projections of marsh elevation change with WARMER-2 across five regions of the San Francisco Bay Delta (Cache Yolo, South Delta, North Delta, Central Delta, and Suisun). The model was run across a range of initial elevations for each region and for scenarios of sea-level rise (30, 61, 91, 122, 152, 183, 305 cm by 2100), sediment availability (historic, constant, declining, and increase), and with and without a temporally dynamic tidal range. Results from the Delta Simulation Model 2 hydrodynamic model were used to calculate rates of tide range increase with sea-level rise. WARMER-2 was calibrated using soil cores from Callaway et al 2012 (Rush Ranch and Browns Island cores), and a soil core from Miners Slough. ...
thumbnail
These data represent net ecosystem exchange of CH4 and CO2 collected using eddy covariance over various time frames. Data were collected from a brackish marsh at Pointe-aux-Chenes State Wildlife Management Area and a tidally influenced freshwater marsh at Salvador State Wildlife Management Area. Both sites were located within the coastal zone of Louisiana, USA.


    map background search result map search result map Net ecosystem exchange of CO2 and CH4 from two Louisiana coastal marshes GCJV High Quality Brackish Marsh within 1 km of Fresh-to-Intermediate Marsh Plant community establishment in a coastal marsh restored using sediment additions, Barataria Basin, Louisiana Tidal Wetland Elevation Projections for Five San Francisco Bay Delta Regions Using WARMER-2, 2000-2100 WARMER-2 Model Inputs and Projections for Three Tidal Wetland Sites Across San Francisco Bay Estuary WARMER-2 Model Inputs for Three Tidal Wetland Sites Across San Francisco Bay Estuary Tidal Wetland Habitat Projections with Sea-level Rise Across Sites in the San Francisco Bay Estuary (2020-2100) Projected future habitat of coastal wetlands in the Nisqually River Delta, Washington Projected future carbon accumulation of coastal wetlands in the Nisqually River Delta, Washington Projected future elevation change of coastal wetlands in the Nisqually River Delta, Washington Eddy covariance fluxes of carbon dioxide and methane from the Herring River in Wellfleet, MA (ver 2.0, June 2022) Eddy covariance fluxes of carbon dioxide and methane from the Herring River in Wellfleet, MA (ver 2.0, June 2022) Projected future habitat of coastal wetlands in the Nisqually River Delta, Washington Projected future carbon accumulation of coastal wetlands in the Nisqually River Delta, Washington Projected future elevation change of coastal wetlands in the Nisqually River Delta, Washington WARMER-2 Model Inputs and Projections for Three Tidal Wetland Sites Across San Francisco Bay Estuary WARMER-2 Model Inputs for Three Tidal Wetland Sites Across San Francisco Bay Estuary Tidal Wetland Habitat Projections with Sea-level Rise Across Sites in the San Francisco Bay Estuary (2020-2100) Net ecosystem exchange of CO2 and CH4 from two Louisiana coastal marshes Plant community establishment in a coastal marsh restored using sediment additions, Barataria Basin, Louisiana Tidal Wetland Elevation Projections for Five San Francisco Bay Delta Regions Using WARMER-2, 2000-2100 GCJV High Quality Brackish Marsh within 1 km of Fresh-to-Intermediate Marsh