Skip to main content
Advanced Search

Filters: Tags: CONUS (X)

263 results (16ms)   

Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U. S. Fish and Wildlife Service (FWS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. These data products are burned area boundary shapefiles derived from post-fire sensor data (including Landsat TM, Landsat ETM+, Landsat OLI). The pre-fire and post-fire subsets included were used to create Normalized Burn Ratio (NBR) and then a differenced Normalized Burn Ratio (dNBR) image. The objective of this assessment was to generate burned area boundaries for each fire. Data bundles also include post-fire subset, pre-fire subset, NBR, and dNBR images. This map layer is a thematic raster...
thumbnail
Floods have become increasingly prominent in recent decades causing devastating effects on lives and livelihoods worldwide. Efficient tools to assess the drivers of floods, such as increasing urbanization, could help to minimize flood hazards. Urbanization increases the design peak flow (maximum potential surface water flow from a precipitation event with an average probability of occurring once in a specific recurrence interval), which is a key information needed for designing stormwater management infrastructures such as culverts and storm sewers. A web-based application was developed to explore the potential changes (1985 to 2020) in design peak flow of urban areas across the conterminous United States driven...
thumbnail
This NetCDF represents the monthly inputs and outputs from a United States Geological Survey water-balance model (McCabe and Wolock, 2011) for the conterminous United States for the period 1895-01-01 to 2020-12-31. The source data used to run the water balance model is based on the National Oceanic and Atmospheric Administration's(Vose and others, 2020) ClimGrid data for precipitation and temperature. This NetCDF contains the following monthly inputs: temperature (degrees Celsius) and precipitation (millimeters, mm) and the following outputs (all in mm): runoff, soil moisture storage, actual evapotranspiration, potential evapotranspiration, snow water equivalent, and snowfall. The spatial reference for this data...
thumbnail
Management of transportation networks is affected by, and has effects on, natural and cultural resources through direct and indirect interactions. Until recently, the availability of such spatially explicit information has been limited; however, the data released here to the public will prove valuable for comparing existing networks and planning options with respect to potential impact to, or from, environmental factors across broad areas, for example, States and Agency Planning Regions. Integrated network and resource analyses can provide insights into potential construction and maintenance costs as well as safety risks and environmental impacts during project planning and assessment. A cooperative project was...
Stream fish data providers for 2015 national assessment of stream fish habitats.
thumbnail
LANDFIRE (LF) 2022 Fuel Vegetation Type (FVT) represents the LF Existing Vegetation Type Ecological Systems (EVT) product, modified to represent pre-disturbance EVT in areas where disturbances have occurred over the past 10 years. Due to shifting EVT codes and labels throughout the years, the FVT codes are based on an early version of EVT codes translated from the current version. FVT is an input for fuel transitions related to disturbance. Fuel products in LF 2022 were created with LF 2016 Remap vegetation in non-disturbed areas. To designate disturbed areas where FVT is modified, the aggregated Annual Disturbance products from 2013 to 2022 in the Fuel Disturbance (FDist) product are used. All existing disturbances...
thumbnail
This metadata record describes a series of tabular datasets containing metrics used to characterize drought for select United States Geological Survey (USGS) streamgages for the climate years (April 1 – March 31) 1981 to 2020. These streamgages are a subset of those used in Geospatial Attributes of Gages for Evaluating Streamflow, version 2 (GAGES-II, Falcone, 2011) in the conterminous United States (CONUS). These metrics include streamflow percentiles, identified drought events, annual low streamflow, and drought statistics for each event.
thumbnail
This metadata record describes a series of datasets containing metrics used to characterize drought for four sets of United States Geological Survey (USGS) streamgages in the conterminous United States (CONUS) for three different time periods between 1921 and 2020 outlined below. The streamgages used are a subset based on the criteria used in Geospatial Attributes of Gages for Evaluating Streamflow, version II (GAGESII, Falcone, 2011). Time periods use climate years, April 1 through March 31. These metrics include streamflow percentiles, identified drought events, annual low streamflow drought statistics, and various attributes for each of those events. These data are arranged here by study group with the following...
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
thumbnail
The U. S. Fish and Wildlife Service (FWS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. These data products are burned area boundary shapefiles derived from post-fire sensor data (including Landsat TM, Landsat ETM+, Landsat OLI). The pre-fire and post-fire subsets included were used to create Normalized Burn Ratio (NBR) and then a differenced Normalized Burn Ratio (dNBR) image. The objective of this assessment was to generate burned area boundaries for each fire. Data bundles also include post fire subset, pre-fire subset, NBR, and dNBR images. This map layer is a vector Fire Occurrence...
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a thematic raster image...
thumbnail
The Monitoring Trends in Burn Severity (MTBS) Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (including wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period of 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic scales and are intended to meet a variety of information needs that require consistent data about fire effects through space and time. This map layer is a vector...


map background search result map search result map Compilation and Assessment of Resource Values and Hazards to Inform Transportation and Associated Land-use Planning Monitoring Trends in Burn Severity Fire Occurrence Dataset (FOD) Point Locations (ver. 7.0, January 2024) Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2012 (ver. 5.0, August 2023) Streamflow Drought Metrics for Select United States Geological Survey Streamgages for Three Different Time Periods from 1921 - 2020 U.S. Fish and Wildlife Service Fire Atlas- Fire Occurrence dataset (ver. 5.0, October 2023) Streamflow Drought Metrics for Selected United States Geological Survey Streamgages from 1981-2020 National Park Service Thematic Burn Severity Mosaic in 1993 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 1989 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 1987 (ver. 6.0, January 2024) USGS monthly water balance model inputs and outputs for the conterminous United States, 1895-2020, based on ClimGrid data National Park Service Thematic Burn Severity Mosaic in 2023 (ver. 6.0, January 2024) LANDFIRE 2022 Fuel Vegetation Type (FVT) CONUS A Web-Based Application for Exploring Potential Changes in Design Peak Flow of US Urban Areas Driven by Land Cover Change US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1990 (ver. 6.0, January 2024) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1990 (ver. 6.0, January 2024) Monitoring Trends in Burn Severity Thematic Burn Severity Mosaic for 2012 (ver. 5.0, August 2023) USGS monthly water balance model inputs and outputs for the conterminous United States, 1895-2020, based on ClimGrid data Compilation and Assessment of Resource Values and Hazards to Inform Transportation and Associated Land-use Planning LANDFIRE 2022 Fuel Vegetation Type (FVT) CONUS Streamflow Drought Metrics for Select United States Geological Survey Streamgages for Three Different Time Periods from 1921 - 2020 Streamflow Drought Metrics for Selected United States Geological Survey Streamgages from 1981-2020 Monitoring Trends in Burn Severity Fire Occurrence Dataset (FOD) Point Locations (ver. 7.0, January 2024) U.S. Fish and Wildlife Service Fire Atlas- Fire Occurrence dataset (ver. 5.0, October 2023) National Park Service Thematic Burn Severity Mosaic in 1993 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 1989 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 2023 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 1987 (ver. 6.0, January 2024) A Web-Based Application for Exploring Potential Changes in Design Peak Flow of US Urban Areas Driven by Land Cover Change