Skip to main content
Advanced Search

Filters: Tags: CSMI (X)

7 results (49ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Description of Work USGS will conduct seasonal sampling of benthic invertebrates, zooplankton, prey fish, and their diets to complement the seasonal lower trophic level sampling by EPA. A point of emphasis is describing the vertical distribution of planktivores and their zooplankton prey, to fill a knowledge gap on these predator/prey interactions. These data will provide a more holistic understanding of how invasive-driven, food-web changes could be altering energy available to sport fishes in the Great Lakes and used to build bioenergetics models that can evaluate whether zooplankton dynamics are being driven by limited resources or excessive predation. Understanding the key drivers of zooplankton will provide...
thumbnail
Description of Work USGS will conduct monthly samples of benthic invertebrates, zooplankton, and water quality as well as seasonal sampling of fish and fish diets. This project supports lower trophic sampling in Lake Erie and understanding food webs. An emphasis will be collecting samples from a nearshore to offshore design.
thumbnail
Description of Work In 2011, the US EPA, USGS, and Canada’s DFO/EC continued the evolution of the strategy to conduct an “integrated’ (water quality to fish) spatially-consistent assessment for the entire lake in order to provide biomass estimates for each trophic level. A total of 54 sites were sampled during summer 2011. Water chemistry, nutrients, phytoplankton, zooplankton, benthic invertebrates, Mysis, and pelagic and benthic fish were collected at each site.
thumbnail
Description of Work USGS scientists will support EPA's year of intensive sampling around the Great Lakes to complement and expand upon EPA and other partner entities work. In 2013, on Lake Ontario USGS will sample the food web from a nearshore (20 m) to offshore (100 m) gradient where seasonal sampling of primary producers, benthic invertebrates, zooplankton, prey fish, sport fish, and their diets will occur. We will work closely with state management agencies and stakeholder groups to ensure that ecosystem models that emerge from this work explore relevant future management scenarios. Scientists will analyze the diets of the six species of trout and salmon currently occurring in Lake Ontario. This predator diet...
thumbnail
Description of WorkThe success of GLRI beach restoration projects must be assessed to determine whether goals of recipients are on track and identify any developing unforeseen consequences of restoration efforts. Implementation of multiple BMPs during restoration can make understanding the impacts of individual BMPs difficult. However, proper site selection and well-designed monitoring and assessment plan can overcome such difficulties. The urban beaches chosen for evaluation are at various stages of the restoration process and located in Indiana (Jeorse Park Beach), Illinois (63rd Street Beach), and Wisconsin (North Beach). Data used for evaluation include continuous monitoring and synoptic mapping of nearshore...
thumbnail
Description of Work USGS will conduct seasonal sampling of benthic invertebrates, zooplankton, prey fish, sport fish, and their diets to complement the seasonal lower trophic level sampling by EPA. This data will provide a more holistic understanding of how invasive-driven, food-web changes could be altering energy available to sport fishes in the Great Lakes and used to build a decision support tool that can explore how different scenarios (dreissenid control, nutrient reductions, changes in fish stocking) influence the biomass of economically important fisheries.
thumbnail
Description of Work Since the early 2000s, the LaMP has proposed adding nutrients (specifically phosphorus) to its “pollutant of concern” list, given that excessive nutrients were believed to cause impairments in the nearshore waters. Since that time, scientists have highlighted the “shunting” of nutrients to the nearshore, owing to the ability of invasive dreissenid mussels to capture some portion of allochthanous phosphorus that enters the lake through tributaries. These changes are believed to underlie a series of changes in the nearshore, including increased biomass of cladophora and hypothesized increases in benthic and pelagic biomass, including zooplankton and fish. As an extension, this model proposes the...


    map background search result map search result map Lake Ontario Component - Exploring changes in nutrient transfer within Great Lakes food webs: implications for fish production Cooperative Science and Monitoring Initiative (CSMI) - LAKE HURON Cooperative Science and Monitoring Initiative (CSMI) - LAKE ERIE Exploring changes in nutrient transfer within Great Lakes food webs: implications for fish production in Lake Michigan in support of CSMI 2010 Exploring nearshore-offshore linkages in energy transfer within Great Lakes food webs: implications for fish production in Lake Michigan in support of CSMI 2015 Cooperative Science and Monitoring Initiative (CSMI) - LAKE SUPERIOR Lake Ontario Component - Exploring changes in nutrient transfer within Great Lakes food webs: implications for fish production Cooperative Science and Monitoring Initiative (CSMI) - LAKE ERIE Cooperative Science and Monitoring Initiative (CSMI) - LAKE HURON Exploring changes in nutrient transfer within Great Lakes food webs: implications for fish production in Lake Michigan in support of CSMI 2010 Exploring nearshore-offshore linkages in energy transfer within Great Lakes food webs: implications for fish production in Lake Michigan in support of CSMI 2015 Cooperative Science and Monitoring Initiative (CSMI) - LAKE SUPERIOR