Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: California Landscape Conservation Cooperative (X)

47 results (8ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Phase 1 & 2 (2010, 2012): This project developed a sampling design and monitoring protocol for wintering shorebirds in the Central Valley and in the San Francisco Bay Estuary and develop an LCC-specific online shorebird monitoring portal publicly available at the California Avian Data Center. The three objectives in Phase II of this project are: 1) Complete the shorebird monitoring plan for the CA LCC by developing a sampling design and monitoring protocol for wintering shorebirds in coastal southern California and northern Mexico. 2) Develop models to evaluate the influence of habitat factors from multiple spatial scales on shorebird use of San Francisco Bay and managed wetlands in the Sacramento Valley, as a model...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Publication, pacific flyway, Datasets/Database, invertebrates, Academics & scientific researchers, All tags...
thumbnail
This project used species distribution modeling to assess the risk to habitat change under various climate change scenarios for rare plants. To predict the response of rare plant species to climate change, the project modeled the current distribution of the species using climate and environmental data (e.g., soils, disturbance, land-use), use these models to predict the species distribution given climate change, calculate current and future range size, calculate the amount of overlap of predicted future distribution with current distribution, and assess where barriers and protected areas are located with reference to the change in species distribution. Given the results of the distribution modeling, each species...
This project will conduct a vulnerability assessment, develop climate-smart adaptation strategies and actions, and generate implementation plans for focal habitats of the South and Central Coast regions of the CALCC, with a specific focus on four Southern California National Forests (Angeles, San Bernardino, Cleveland, Los Padres).Specific project goals include:(1) Assess the regional vulnerabilities and resiliencies of focal habitats to climate change and non-climate change stressors.(2) Generate climate-informed maps to identify how vulnerabilities vary spatially to help prioritize conservation areas and activities.(3) Identify implementable climate-smart conservation strategies and actions to conserve priority...
The Climate Science Alliance - South Coast is a partnership formed to develop and support a network of conservation leaders, scientists, and natural resource managers focused on sharing ecosystem-based resiliency approaches to safeguard our communities and natural resources from climate change risks.In the spirit of collaboration, the California Department of Fish & Wildlife, the California Landscape Conservation Cooperative, the San Diego Regional Climate Collaborative, the California Wildlife Foundation, and the Robert and Patricia Switzer Foundation are working together to support the San Diego Climate Science Alliance. The partners are committed to building a foundation for landscape level, long term collaborative...
California’s Central Valley supports over 20 endemic, special-status species associated with vernal pools and seasonal wetlands, yet loss of 90% of the original extent of these habitats has resulted in highly-fragmented, remnant pools of varying habitat quality. Managers need science support to inform conservation priorities and possible enhancement of remaining pools, particularly since projected increases in temperature and decreases in precipitation may dry ponds to an extent that reduces or precludes their habitat value. Ongoing changes in climate will, in turn, cause changes in hydrologic regime, with a decreased hydroperiod expected to detrimentally affect reproductive occupancy of special status species such...
This project designed a monitoring program and protocol to detect the effects of climate change on tidal marsh bird population abundance and distribution. It is a companion to “Tidal Marsh Bird Population and Habitat Assessment for San Francisco Bay under Future Climate Change Conditions” and will build on its products, enabling evaluation of the long-term viability of four tidal-marsh bird species threatened by impacts of climate change: Clapper Rail, Black Rail, Common Yellowthroat, and Song Sparrow (three endemic subspecies: San Pablo, Suisun, and Alameda). Information is available through the California Avian Data Center. See also: http://data.prbo.org/apps/sfbslr/index.php?page=lcc-page
This case study project is on the Upper Pajaro River, which crosses a 9,000-acre natural floodplain in the Central Coast. A portion of the riparian corridor within the floodplain is highly degraded due to intensive agricultural land use that has diminished its wildlife value and severed habitat connectivity. If restored, the corridor would connect 2 million acres of core habitat in adjacent uplands and link exceptionally rich natural communities in three climatically diverse coastal mountain ranges. This project developed a suite of climate-smart restoration practices in the Central Coast Ecoregion and pilot those practices on the Upper Pajaro River as a case study. Project goals are to: 1) Establish native riparian...
thumbnail
This dataset is based on the output from a project funded by the California Landscape Conservation Cooperative: “Decision support for climate change adaptation and fire management strategies for at risk species in southern California”. The potential distribution of Ceanothus greggii was modeled using a MaxEnt species distribution model using recent and future climate data with presence records from the San Diego Natural History Museum. Species distributions were modeled only for the South Coast Ecoregion in California, USA as this is where management options and climate change adaptation possibilities are currently being examined for the species. Recent climate data were based on the Parameter-Elevation Regressions...
This project integrates fire risk models, species distribution models (SDMs) and population models with scenarios of future climate and land cover to project how the effects of climate-induced changes to species distributions and land use change will impact threatened species in fire-prone ecosystems. This project also identifies and prioritizes potential management responses to climate change (e.g. assisted colonization, fire management, land protection, dispersal corridors). Anticipated products include: 1) maps (digital and hard copy) of habitat suitability under current and future climate change, current and future projected urban growth and combinations of climate change and future projected urban growth, under...
Categories: Data, Project; Tags: assisted colonization, assisted colonization, moisture, corridor, translocation, All tags...
This project used species distribution modeling, population genetics, and geospatial analysis of historical vs. modern vertebrate populations to identify climate change refugia and population connectivity across the Sierra Nevada. It is hypothesized that climate change refugia will increase persistence and stability of populations and, as a result, maintain higher genetic diversity. This work helps managers assess the need to include connectivity and refugia in climate change adaptation strategies. Results help Sierra Nevada land managers allocate limited resources, aid future scenario assessment at landscape scales, and develop a performance measure for assessing resilience.
Categories: Data, Project; Tags: Data Acquisition and Development, microsatellite, vertebrates, Publication, Federal resource managers, All tags...
This project evaluates the effects of global climate change and sea level rise on estuarine intertidal habitat in the San Francisco Bay and the Pacific Flyway migratory waterbirds that rely on this habitat. Phase 2 of this project is a continuation of work to evaluate the effects of global climate change and sea level rise (SLR) on intertidal shoals in the San Francisco Bay Estuary and the migratory waterbirds that rely on this critically important resource in the Pacific Flyway. The primary objectives are to: 1) use downscaled global climate change models to translate SLR and climate scenarios into habitat quantity predictions through Delft3D and Dflow-FM (unstructured grid) geomorphic modeling; 2) model the response...
The main goal of this project is to ensure that the 2011-13 climate change update to the Baylands Ecosystem Habitat Goals Report (Baylands Goals) and other key, ongoing conservation activities in the San Francisco Bay region use the latest information about the current and future status of San Francisco Bay tidal marsh ecosystems, particularly in the context of sea-level rise. The main product of the project is the improved Sea Level Rise (SLR) Tool, specifically upgraded to inform the Baylands Goals Report update. The tool will continue to be available online at www.prbo.org/sfbayslr. All data layers going into the tool are and will continue to be downloadable from the site.
A century of fire exclusion across many forest types in the western U.S. has resulted in unforeseen changes, including high fuel accumulations, high densities of trees, and increasing dominance of fire-intolerant species. These changes are particularly acute in forests that historically experienced high frequency and low severity fires. In response, the NPS Pacific-West region supports a large prescribed fire program to reduce understory fuels and forest density. Prescribed fire has been generally successful at reducing understory fuels and threats of catastrophic fire, and treated stands are expected to be more resistant to future wildfire. Less well understood is how well prescribed fire confers resistance to...
This project uses existing decision support tools (DST) in a scenario planning analysis for the South Bay Salt Ponds Restoration Project (SBSPRP) as a case study that other bayland managers can reference for best practices for using these DSTs for adaptation planning. Through substantial investment by the CA LCC and other partners, we have developed a set of DSTs that support conservation decision-making for San Francisco Estuary ecosystems (www.prbo.org/sfbayslr (link is external) and (link is external)). These tools are ideally suited to support climate-smart restoration planning for shorebird and marshbird habitat. However, the utility of these tools could be promoted through their application in an actual case...
The goal of this project is to create critically needed coastal fog datasets. Anticipated products from the collaboration between on-the-ground natural resource managers and a multidisciplinary coalition of physical scientists are: 1) a compilation of existing fog related data from multiple sources: satellite (AVHRR, GOES, Modis, Landsat), NOAA buoy , and airport and meteorological stations, 2) USGS Open File report documenting the results of a multiday working session with climatologists, remote sensing specialists, fog modelers, statisticians, and natural resource managers, convened to review the data, examine and assess the correlations between data streams and models, specify initial parameters to be extracted...
Categories: Data, Project; Tags: Publication, California coast, Population and Habitat Evaluation/Projection, Federal resource managers, risk, All tags...
This project uses bottom-up modeling at a parcel scale to measure the effects of sea-level rise (SLR) on coastal ecosystems and tidal salt marshes. At selected tidal marshes, the project team will measure several parameters that will be incorporated into ArcGIS models creating comparable datasets across the Pacific coast tidal gradient with a focus on 2-4 sites in the California LCC (e.g. San Diego, San Francisco Bay Refuges). The ultimate goal is to provide science support tools for local adaptation planning from the bottom-up that may be implemented under a structured decision-making framework.Science Delivery Phase (2013): The objectives are to: (1) Disseminate site-specific baseline data and modeling results,...
Categories: Data, Project; Tags: vertebrates, California coast, Datasets/Database, Population and Habitat Evaluation/Projection, invertebrates, All tags...
thumbnail
This project used the NatureServe Climate Change Vulnerability Index tool to assess vulnerability of 140 bird species that breed in the Sierra Nevada and will develop a peer-reviewed Climate Change Adaptation Strategy for Sierra Nevada bird species that are most vulnerable to climate change. The Strategy provides recommendations for actions that managers can take now and in the future to bolster resilience to climate change.
The CA Academy of Science and Point Blue Conservation Science conducted a systematic analysis of uncertainty in modeling the future distributions of ~50 California endemic plant species and ~50 California land birds, explicitly partitioning among 5 alternative sources of variation and testing for their respective contributions to overall variation among modeled outcomes. They mapped the uncertainty from identified sources, which can guide decisions about monitoring, restoration, acquisition, infrastructure, etc., in relation to climate change.


map background search result map search result map Assessing and Mapping Rare Plant Species Vulnerability to Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends Projected climate change and urbanization impacts on the distribution of Ceanothus greggii Assessing climate change vulnerability and developing a climate change adaptation strategy for Sierra Nevada birds Projected climate change and urbanization impacts on the distribution of Ceanothus greggii Assessing climate change vulnerability and developing a climate change adaptation strategy for Sierra Nevada birds A Monitoring Protocol to Assess Wintering Shorebird Population Trends Assessing and Mapping Rare Plant Species Vulnerability to Climate Change