Skip to main content
Advanced Search

Filters: Tags: Cape Cod (X) > Types: OGC WFS Layer (X)

46 results (100ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset contains images obtained from unmanned aerial systems (UAS) flown in the Cape Cod National Seashore. The objective of the field work was to evaluate the quality and cost of mapping from UAS images. Low-altitude (approximately 120 meters above ground level) digital images were obtained from cameras in a fixed-wing unmanned aerial vehicle (UAV) flown from the lawn adjacent to the Coast Guard Beach parking lot on 1 March, 2016. The UAV was a Skywalker X8 flying wing operated by Raptor Maps, Inc., contractors to the U.S. Geological Survey. U.S. Geological Survey technicians deployed and mapped 28 targets that appear in some of the images for use as ground control points. All activities were conducted according...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Cape Cod, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
This dataset contains the locations of independent survey points acquired on the same day that images were obtained from unmanned aerial systems (UAS) flown in the Cape Cod National Seashore. The overall objective of the field work was to evaluate the quality and cost of mapping from UAS images. Low-altitude (approximately 120 meters above ground level) digital images were obtained from cameras in a fixed-wing unmanned aerial vehicle (UAV) flown from the lawn adjacent to the Coast Guard Beach parking lot on 1 March, 2016. U.S. Geological Survey technicians deployed and mapped 28 targets that appear in some of the images for use as ground control points. All activities were conducted according to Federal Aviation...
thumbnail
Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
Lake-bottom sediment and associated quality-control samples were collected in August 2020 from one coring location (U.S. Geological Survey station 413756070321301, ASHUMET POND, MASHPEE MI-ASHPD-0011) in Ashumet Pond downgradient from a former fire-training area on Cape Cod, Massachusetts. The core was collected to determine if per- and polyfluoroalkyl substances (PFAS) were present in the bottom sediments of a lake known to have elevated concentrations of PFAS in surface water and groundwater (Tokranov and others, 2021), and whether the sediments could act as a continuous source of PFAS to the lake. Processing the sediment core entailed collection of discrete samples at intervals ranging from 1-5 centimeters (cm)...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained...
thumbnail
This data release presents chemical and biological results from an investigation of the uptake of per- and polyfluoroalkyl substances (PFAS) from groundwater contaminated by fire training activities on Cape Cod, Massachusetts conducted from July to August 2019. An exposure experiment was conducted at an a PFAS contaminated site (FTA-1) near the fire training area (FTA). To assess the tissue-specific uptake characteristics of the mixture of PFAS present in the groundwater from the FTA-1 site, a 21-day mobile laboratory exposure experiment was conducted. Details for the groundwater sampling sites and well construction are presented (Table 1). The PFAS mixture concentrations and composition in groundwater and in fish...
thumbnail
In summer in Massachusetts, USA, preferential groundwater discharge zones are often colder than adjacent streambed areas that do not have substantial discharge. Therefore, discharge zones can efficiently be identified and mapped over space using heat as a tracer. This data release contains fiber-optic distributed temperature sensing (FO-DTS) data collected along the streambed interface of the main channel and tributaries of the upper Quashnet River, within approximately 1 km of Johns Pond, from June 14 to June 20, 2020. For these deployments a Salixa XT-DTS control unit (Salixa Ltd, Hertfordshire, UK) was used, and measurements were made over several day increments at 0.508 m linear resolution. Specific locations...
thumbnail
This U.S. Geological Survey data release provides a comprehensive dataset of water-quality data and sampling-site characteristics collected in 1978–2018 during a study of the effects of land disposal of treated wastewater on groundwater quality in an unconsolidated sand and gravel aquifer on Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to rapid-infiltration beds at Joint Base Cape Cod for nearly 60 years before the disposal was moved to a different location in December 1995. The discharge formed a plume of contaminated groundwater that partly discharges to a glacial kettle lake about 1,600 feet from the beds and extends about 4.5 miles toward coastal saltwater bodies at Vineyard Sound....


map background search result map search result map Low-altitude aerial imagery obtained with unmanned aerial systems (UAS) flights over Coast Guard Beach, Nauset Spit, Nauset Inlet, and Nauset Marsh, Cape Cod National Seashore, Eastham, Massachusetts on 1 March 2016 (JPEG images) Independent transect point locations (coordinates only) associated with images collected during unmanned aerial systems (UAS) flights over Coast Guard Beach, Nauset Spit, Nauset Inlet, and Nauset Marsh, Cape Cod National Seashore, Eastham, Massachusetts on 1 March 2016 (Text file) Chemical Data From 40 Years of Monitoring a Treated-Wastewater Groundwater Plume in a Sand and Gravel Aquifer, Cape Cod, Massachusetts, 1978-2018 Vineyard and Nantucket Sounds, Southern coast of Cape Cod including Martha's Vineyard and Nantucket: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83). Cape Cod Bay Baseline for the Cape Cod Bay coastal region in Massachusetts, generated to calculate shoreline change rates (with the proxy-datum bias) using the Digital Shoreline Analysis System version 5.0 Long-term and short-term shoreline change rates for the southern coastal region of Cape Cod, Massachusetts calculated without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Monomoy Island, MA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Elevation of marsh units in Massachusetts salt marshes Unvegetated to vegetated ratio of marsh units in Massachusetts salt marshes Mean tidal range of marsh units in Massachusetts salt marshes Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for Outer Cape Cod, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Baselines for Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baseline for the southern coast of Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for the southern coast of Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Fiber-optic distributed temperature sensing data collected for improved mapping and monitoring of contaminated groundwater discharges along the upper Quashnet River, Mashpee and Falmouth, Massachusetts, USA 2020 Concentrations of Per- and Polyfluoroalkyl Substances (PFAS) in Lake-Bottom Sediments of Ashumet Pond on Cape Cod, Massachusetts, 2020 (ver. 2.0, February 2024) Tissue-specific bioconcentration of per- and polyfluoroalkyl substances by fathead minnows from contaminated groundwater at a fire-training area, Cape Cod, Massachusetts from 2019 Fiber-optic distributed temperature sensing data collected for improved mapping and monitoring of contaminated groundwater discharges along the upper Quashnet River, Mashpee and Falmouth, Massachusetts, USA 2020 Concentrations of Per- and Polyfluoroalkyl Substances (PFAS) in Lake-Bottom Sediments of Ashumet Pond on Cape Cod, Massachusetts, 2020 (ver. 2.0, February 2024) Low-altitude aerial imagery obtained with unmanned aerial systems (UAS) flights over Coast Guard Beach, Nauset Spit, Nauset Inlet, and Nauset Marsh, Cape Cod National Seashore, Eastham, Massachusetts on 1 March 2016 (JPEG images) DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Monomoy Island, MA, 2014 Baseline for the Cape Cod Bay coastal region in Massachusetts, generated to calculate shoreline change rates (with the proxy-datum bias) using the Digital Shoreline Analysis System version 5.0 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Tissue-specific bioconcentration of per- and polyfluoroalkyl substances by fathead minnows from contaminated groundwater at a fire-training area, Cape Cod, Massachusetts from 2019 Long-term and short-term shoreline change rates for the southern coastal region of Cape Cod, Massachusetts calculated without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Intersects for the southern coast of Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baseline for the southern coast of Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Chemical Data From 40 Years of Monitoring a Treated-Wastewater Groundwater Plume in a Sand and Gravel Aquifer, Cape Cod, Massachusetts, 1978-2018 Baselines for Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for Outer Cape Cod, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Cape Cod Bay Vineyard and Nantucket Sounds, Southern coast of Cape Cod including Martha's Vineyard and Nantucket: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83). Mean tidal range of marsh units in Massachusetts salt marshes Elevation of marsh units in Massachusetts salt marshes Unvegetated to vegetated ratio of marsh units in Massachusetts salt marshes