Skip to main content
Advanced Search

Filters: Tags: Cape Cod (606914) (X)

12 results (41ms)   

View Results as: JSON ATOM CSV
thumbnail
Coastal wetlands are major global carbon sinks, however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, static chamber measurements of greenhouse gas (GHG) fluxes were compared among major plant-defined zones (high marsh dominated by Distichlis spicata and a zone of invasive Phragmites australis) during 2013 and 2014 growing seasons. Two sediment cores were collected in 2015 from the Phragmites zone to support previously reported core collections from the high marsh sites (Gonneea and others 2018). Collected cores were up to 70 cm in length with dry bulk density ranges from 0.04 to 0.33 grams per cubic centimeter and carbon content 22.4%...
thumbnail
The Herring River estuary in Wellfleet, Cape Cod, Massachusetts, has been tidally restricted for more than a century by a dike constructed near the mouth of the river. Upstream from the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and brackish wetlands dominated by Phragmites australis. This estuary is now managed by the National Park Service, which plans to replace the aging dike and restore tidal flow to the estuary. To assist National Park Service land managers with restoration planning, the U.S. Geological Survey collected fourteen sediment cores from different ecosystems...
thumbnail
Environmental parameters affecting plant productivity and microbial respiration, such as water level, salinity, and groundwater temperature included in these datasets, are key components of wetland carbon cycling, carbon storage, and capacity to maintain elevation. Data were collected to (1) provide background data to evaluate potential differences in water level and carbon flux between wetland sites with differing elevation and tidal inundation and (2) facilitate applications of Blue Carbon projects in coastal wetlands. Associated child pages include continuous water level, salinity, and temperature from shallow wells installed in coastal wetland sites on Cape Cod, Massachusetts. These datasets are grouped by the...
thumbnail
Nineteen sediment cores were collected from five salt marshes on the northern shore of Cape Cod where previously restricted tidal exchange was restored to part of the marshes. Cores were collected in duplicate from two locations within each marsh complex: one upstream and one downstream from the former tidal restriction (typically caused by an undersized culvert or a berm). The unaltered, natural downstream sites provide a comparison against the historically restricted upstream sites. The sampled cores represent a chronosequence of restoration occurring between 2001–10. Collected cores were up to 168 cm in length with dry bulk density ranging from 0.04 to 2.62 grams per cubic centimeter and carbon content 0.12 %...
Categories: Data; Tags: Barnstable County (606927), Bass Creek (617465), Boat Meadow River (616844), Cape Cod (606914), Cape Cod Canal (619536), All tags...
thumbnail
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here we present measurements of net ecosystem exchange of carbon dioxide (CO2) and methane, along...
thumbnail
Salt marshes are environmental ecosystems that contribute to coastal landscape resiliency to storms and rising sea level. Ninety percent of mid-Atlantic and New England salt marshes have been impacted by parallel grid ditching that began in the 1920s–40s to control mosquito populations and to provide employment opportunities during the Great Depression (James-Pirri and others, 2009; Kennish, 2001). Continued alteration of salt marsh hydrology has had unintended consequences for salt marsh sustainability and ecosystem services. Great Barnstable Marsh (Barnstable, Cape Cod, Massachusetts) has areas of salt marsh that were ditched as well as natural areas. The U.S. Geological Survey (USGS) measured parameters for groundwater...
thumbnail
Continuous monitoring data reported are a portion of data from a larger study investigating changes in soil properties, carbon accumulation, and greenhouse gas fluxes in four recently restored salt marsh sites and nearby natural salt marshes. For several decades, local towns, conservation groups, and government organizations have worked to identify, replace, repair, and enlarge culverts to restore tidal flow upstream from historical tidal restrictions in an effort to restore salt marsh ecosystems on Cape Cod, Massachusetts. Undersized or failed culverts restrict tidal exchange between the marsh and the bays and estuaries, which leads to alterations in plant community composition and in fundamental processes controlling...
Tags: Barnstable County (606927), Bass Creek (615672), CTD measurement, Cape Cod (606914), Cape Cod Museum of Natural History (604249), All tags...
thumbnail
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here we present measurements of net ecosystem exchange of carbon dioxide (CO2) and methane, along...
thumbnail
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted vast areas of coastal wetlands to tidal exchange. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here we present measurements of net ecosystem exchange of carbon dioxide (CO2) and methane, along...
thumbnail
Environmental parameters affecting plant productivity and microbial respiration, such as water level, salinity, and groundwater temperature included in these datasets, are key components of wetland carbon cycling, carbon storage, and capacity to maintain elevation. Data were collected to (1) provide background data to evaluate potential differences in water level and carbon flux between wetland sites with differing elevation and tidal inundation and (2) facilitate applications of Blue Carbon projects in coastal wetlands. Associated child pages include continuous water level, salinity, and temperature from shallow wells installed in coastal wetland sites on Cape Cod, Massachusetts. These datasets are grouped by the...
thumbnail
Environmental parameters affecting plant productivity and microbial respiration, such as water level, salinity, and groundwater temperature included in these datasets, are key components of wetland carbon cycling, carbon storage, and capacity to maintain elevation. Data were collected to (1) provide background data to evaluate potential differences in water level and carbon flux between wetland sites with differing elevation and tidal inundation and (2) facilitate applications of Blue Carbon projects in coastal wetlands. Associated child pages include continuous water level, salinity, and temperature from shallow wells installed in coastal wetland sites on Cape Cod, Massachusetts. These datasets are grouped by the...
thumbnail
The Herring River estuary (Wellfleet, Cape Cod, Massachusetts) has been tidally restricted for over a century by a dike constructed near the mouth of the river. Behind the dike, the tidal restriction has caused the conversion of salt marsh wetlands to various other ecosystems including impounded freshwater marshes, flooded shrub land, drained forested upland, and wetlands dominated by Phragmites australis. This estuary is now managed by the National Park Service, which has plans to replace the dike and restore tidal flow to the estuary. To assist National Park Service land managers with restoration planning, study collaborators have been investigating differences in soil properties, carbon accumulation, and greenhouse...


    map background search result map search result map Continuous Monitoring Data From Natural and Restored Salt Marshes on Cape Cod, Massachusetts, 2016-17 Continuous Monitoring Data From Great Barnstable Marsh on Cape Cod, Massachusetts, 2017-19 Continuous Monitoring Data From Herring River Wetlands, Cape Cod, Massachusetts, 2015 to January 2020 Collection, analysis, and age-dating of sediment cores from Herring River wetlands and other nearby wetlands in Wellfleet, Massachusetts, 2015–17 Collection, analysis, and age-dating of sediment cores from natural and restored salt marshes on Cape Cod, Massachusetts, 2015-16 Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015 Continuous Water Level, Salinity, and Temperature Data from Monitoring Wells in Herring River Wetlands, Cape Cod, Massachusetts, 2020-2021 Continuous Water Level, Salinity, and Temperature Data from Monitoring Wells in Wetlands on the South Shore of Cape Cod, Massachusetts, 2020 Eddy covariance fluxes of carbon dioxide and methane from the Herring River in Wellfleet, MA (ver 2.0, June 2022) Static chamber fluxes of carbon dioxide and methane from Phragmites wetlands and supporting data collected across a salinity gradient on Cape Cod, Massachusetts Static chamber fluxes of carbon dioxide and methane from coastal wetlands on Upper Cape Cod, Massachusetts and supporting environmental data, 2021 Continuous Water Level, Salinity, and Temperature Data from Creeks and Monitoring Wells in Natural and Restored Wetlands on Cape Cod, Massachusetts, 2019 Static chamber gas fluxes and carbon and nitrogen isotope content of age-dated sediment cores from a Phragmites wetland in Sage Lot Pond, Massachusetts, 2013-2015 Eddy covariance fluxes of carbon dioxide and methane from the Herring River in Wellfleet, MA (ver 2.0, June 2022) Continuous Water Level, Salinity, and Temperature Data from Monitoring Wells in Wetlands on the South Shore of Cape Cod, Massachusetts, 2020 Continuous Monitoring Data From Great Barnstable Marsh on Cape Cod, Massachusetts, 2017-19 Continuous Monitoring Data From Herring River Wetlands, Cape Cod, Massachusetts, 2015 to January 2020 Continuous Water Level, Salinity, and Temperature Data from Monitoring Wells in Herring River Wetlands, Cape Cod, Massachusetts, 2020-2021 Collection, analysis, and age-dating of sediment cores from Herring River wetlands and other nearby wetlands in Wellfleet, Massachusetts, 2015–17 Continuous Monitoring Data From Natural and Restored Salt Marshes on Cape Cod, Massachusetts, 2016-17 Static chamber fluxes of carbon dioxide and methane from coastal wetlands on Upper Cape Cod, Massachusetts and supporting environmental data, 2021 Continuous Water Level, Salinity, and Temperature Data from Creeks and Monitoring Wells in Natural and Restored Wetlands on Cape Cod, Massachusetts, 2019 Static chamber fluxes of carbon dioxide and methane from Phragmites wetlands and supporting data collected across a salinity gradient on Cape Cod, Massachusetts Collection, analysis, and age-dating of sediment cores from natural and restored salt marshes on Cape Cod, Massachusetts, 2015-16