Skip to main content
Advanced Search

Filters: Tags: Chattahoochee River (X)

15 results (153ms)   

View Results as: JSON ATOM CSV
thumbnail
The Apalachicola-Chattahoochee-Flint River Basin (ACFB) was modeled to produce fourteen simulations of streamflow for demonstration of enhancements to the Precipitation Runoff Modeling System (PRMS); seven simulations without water use effects and seven simulations with water use effects. The seven simulations without water use were for 1) the whole ACFB basin (1982-2012), 2) the Chestatee River sub-basin (1982-2012), 3) the Chipola River sub-basin (1982-2012), 4) the Ichawaynochaway Creek sub-basin (1982-2012), 5) the Potato Creek sub-basin (1942-2012), 6) the Spring Creek sub-basin (1952-2012), and 7) the upper Chattahoochee River sub-basin (1982-2012). The seven simulations with water use effects were for the...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations of the upper Chattahoochee River Basin in northeast Georgia using the Precipitation Runoff Modeling System (PRMS). These simulations were developed to provide example applications of enhancements to the PRMS for the following topics: two new time-series input options (dynamic parameter module and water-use module), two new output options (Hydrologic Response Unit (HRU) summary output module and basin variables summary output module), and three updates of existing capabilities (stream and lake flow routing module, surface-depression storage and flow simulation, and the initial-conditions specification). These PRMS model input and output...
thumbnail
This data release contains inputs for and outputs from hydrologic simulations of the Apalachicola-Chattahoochee-Flint River Basin (ACFB) in the southeastern U.S. using the Precipitation Runoff Modeling System (PRMS). Seven hydrologic models, one coarse-resolution model for the entire ACFB and six fine-resolution models of tributary sub-basins. These simulations were developed to provide estimates of water availability and statistics of streamflow. These PRMS model input and output data are intended to accompany a U.S. Geological Survey Scientific Investigations Report (LaFontaine and others, 2017); they include three types of data: 1) PRMS input parameter and data files, 2) PRMS output data files, and 3) GIS files...
thumbnail
The upper Chattahoochee River Basin in northeast Georgia was modeled to produce seven example simulations of streamflow for demonstration of enhancements to the Precipitation Runoff Modeling System (PRMS). These data document the PRMS output data files from each of these simulations. Output files for the following simulations are included: 1) a baseline simulation of the existing model (includes HRU summary and basin variables output modules, and updates to depression storage), 2) a simulation using the dynamic parameters enhancement, 3) a simulation that generates an initial conditions file, 4) a simulation that uses a previously generated initial conditions file, 5) a simulation that uses the flow replacement...
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...
thumbnail
The Apalachicola-Chattahoochee-Flint River Basin (ACFB) was modeled to produce fourteen simulations of streamflow with the Precipitation Runoff Modeling System (PRMS); seven simulations without water use effects and seven simulations with water use effects. The simulations were for 1) the whole ACFB basin (1982-2012), 2) the Chestatee River sub-basin (1982-2012), 3) the Chipola River sub-basin (1982-2012), 4) the Ichawaynochaway Creek sub-basin (1982-2012), 5) the Potato Creek sub-basin (1942-2012), 6) the Spring Creek sub-basin (1952-2012), and 7) the upper Chattahoochee River sub-basin (1982-2012). These data document the PRMS parameter files and input data files used in each of these simulations. Input files...
thumbnail
The stream segments available here are for seven applications of the Precipitation Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin (ACFB) by LaFontaine and others (2017). Geographic Information System (GIS) files for the stream segments in each of the seven model applications (whole ACFB, Chestatee River, Chipola River, Ichawaynochaway Creek, Potato Creek, Spring Creek, and Upper Chattahoochee River) are provided as shapefiles with attributes identifying the numbering convention used in the PRMS models of the ACFB.
thumbnail
The upper Chattahoochee River Basin in northeast Georgia was modeled to produce seven example simulations of streamflow for demonstration of enhancements to the Precipitation Runoff Modeling System (PRMS). These data document the PRMS parameter files and input data files used in each of these simulations. Input files for the following simulations are included: 1) a baseline simulation of the existing model (includes HRU summary and basin variables output modules, and updates to depression storage), 2) a simulation using the dynamic parameters enhancement, 3) a simulation that generates an initial conditions file, 4) a simulation that uses a previously generated initial conditions file, 5) a simulation that uses...
thumbnail
The hydrologic response units (HRUs) available here are for seven applications of the Precipitation Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin (ACFB) by LaFontaine and others (2017). Geographic Information System (GIS) files for the HRUs in each of the seven model applications (whole ACFB, Chestatee River, Chipola River, Ichawaynochaway Creek, Potato Creek, Spring Creek, and Upper Chattahoochee River) are provided as shapefiles with attributes identifying the numbering convention used in the PRMS models of the ACFB.
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...


    map background search result map search result map Model Input and Output for Hydrologic Simulations of the Upper Chattahoochee River Basin that Demonstrate Enhancements to the Precipitation Runoff Modeling System Model Input and Output for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin using the Precipitation Runoff Modeling System Precipitation Runoff Modeling System Input Data for Hydrologic Simulations of the Upper Chattahoochee River Basin in Northeast Georgia, United States Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Upper Chattahoochee River Basin in Northeast Georgia, United States Input Data for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Hydrologic Response Units Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Stream Segments Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget for 2010 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Model Input and Output for Hydrologic Simulations of the Upper Chattahoochee River Basin that Demonstrate Enhancements to the Precipitation Runoff Modeling System Precipitation Runoff Modeling System Input Data for Hydrologic Simulations of the Upper Chattahoochee River Basin in Northeast Georgia, United States Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Upper Chattahoochee River Basin in Northeast Georgia, United States Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget for 2010 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Input Data for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Model Input and Output for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin using the Precipitation Runoff Modeling System Hydrologic Response Units Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Stream Segments Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S.