Skip to main content
Advanced Search

Filters: Tags: Climate Change (X) > partyWithName: Conservation Biology Institute (X)

16 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This project developed a soil vulnerability index and map indicating where forest cover will be most affected by climate change. Using this map, researchers developed a greater understanding of potential changes in soil moisture and temperature regimes under future climate conditions. They then evaluated how this information could be used to improve vegetation models across the landscape. They compared the results of different modeling approaches to the soil vulnerability map, synthesized the state of knowledge and uncertainty, and introduced management implications for action.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2011, AK, AK, AK, AK, All tags...
thumbnail
This dataset represents the average amount of Growing Degree Days (GDD) per year within each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Growing degree days (referenced to 0oC) (unit = deg C days) were determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries. They were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). The MC1 model...
The over-arching theme of this work is that soil data affect the performance and realism of vegetation models with particular focus on their ability to predict or explain disturbances such as fire or disease. We tested the sensitivity of the Excel version of the 3-PG model to soil properties and applied this information to understanding bark beetle attacks in drought-stressed forests. We tested the sensitivity of the MC2 model to soil depth with a particular focus on how soils affect the biogeochemistry and fire modules of the Dynamic Global Vegetation Model (DGVM). We found in these sensitivity analyses, soil depth, soil water storage capacity (ASW) and soil texture are among the most important soil factors to...
thumbnail
This dataset represents the average carbon consumed by fire for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Carbon in biomass consumed by fire, in g m-2 yr-1, was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, OR and WA, for a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). The MC1 model was run using historical data...
thumbnail
This dataset represents the historical majority vegetation type (30 year mode), for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Majority vegetation type was determined for each HUC5 watershed by calculating the 30 year mode from original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, a nd wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....
thumbnail
This dataset depicts the Difference of Winter Precipitation for 2045-2060 compared to 1968-1999 for GFDL. These data have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET web site (http://users.ictp.it/RegCNET/model.html),...
thumbnail
The Conservation Biology Institute is developing a tool that managers in all watersheds of the Southern Rockies Landscape Conservation Cooperative can use to project the effects of climate change on soil vulnerability conditions and help resource managers develop appropriate strategies to mitigate negative climate impacts.Specifically, they will develop a spatially-explicit soil vulnerability index for the Southern Rockies Landscape Conservation Cooperative that can be used to forecast short-term response of plants to current drought conditions and test a vegetation model of plant response to drought.Conservation Biology Institute will use the soil vulnerability index to compare historical and future simulations...
thumbnail
This dataset represents the historical majority vegetation type (30 year mode), for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Majority vegetation type was determined for each HUC5 watershed by calculating the 30 year mode from original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, a nd wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....
thumbnail
This dataset represents the average surface runoff for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Mean surface runoff (in mm H2O yr-1), was determined for each HUC5 watershed by averaging values of original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The MC1 model was...
This data set is distributed through the Conservation Biology Institute's Data Basin site: http://app.databasin.org/app/pages/datasetPage.jsp?id=5a1a66e950534fd095dee1a68a8c6f61 From the metadata: "This dataset shows the predicted change in average precipitation between historical (1961-1990) and future (2070-2099) time periods, simulated by the dynamic global vegetation model MC1 under the Hadley climate change projection and the anthropogenic emissions scenario A2. Change in precipitation (per ~ 8 km pixel) is depicted as a ratio of the average precipitation for 2070-2099 / the average for 1961-1990. Data values above 1 represent a projected increase in precipitation and values less than 1 represent a projected...
thumbnail
A “gateway” using Data Basin technology has been developed to serve the data integration, collaboration and outreach needs of the NPLCC. The gateway will continue to be a customized interface of the Data Basin platform that includes special branding, curation of spatial content, and direct links to selected sites in support of projects funded by and for the NPLCC . Conservation Biology Institute will add to the “gateway” a spatial data visualization tool to showcase priority data from the Pacific Marine and Estuarine Fish Habitat Partnership.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2013, AK-1, AK-1, AK-1, AK-1, All tags...
thumbnail
This dataset represents the average amount of soil carbon within each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Soil carbon, in g m-2, was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The MC1 model was run using historical data and future climate change projections...
This data set is distributed through the Conservation Biology Institute's Data Basin site: http://app.databasin.org/app/pages/datasetPage.jsp?id=e2d159c08cd7463b9fcf8e5d8ae66740 A description from the metadata: "This dataset shows the predicted rise in temperature between historical (1961-1990) and future (2070-2099) time periods, simulated by the dynamic global vegetation model MC1 underthe Hadley climate change projection and the anthropogenic emissions scenario A2. Temperature change (in degrees C) was calculated by taking the difference between the simulated future average monthly maximum temperature and the historical average monthly maximum temperature per ~ 8 km pixel. Background: The dynamic global...
thumbnail
FY2011Aspen populations are in decline across western North America due to altered fire regimes, herbivory, drought, pathogens, and competition with conifers. Aspen stands typically support higher avian biodiversity than surrounding habitats, and maintaining current distributions of several avian species is likely tied to persistence of aspen on the landscape. We are examining effects of climate change on aspen and associated avian communities in isolated mountain ranges of the northern Great Basin, by coupling empirical models of avian-habitat relationships with spatially-explicit landscape simulations of vegetation and disturbance dynamics (using LANDIS-II) under various climate change scenarios. We are addressing...
thumbnail
This project developed a soil vulnerability index and map indicating where forest cover will be most affected by climate change. Using this map, researchers developed a greater understanding of potential changes in soil moisture and temperature regimes under future climate conditions. They then evaluated how this information could be used to improve vegetation models across the landscape. They compared the results of different modeling approaches to the soil vulnerability map, synthesized the state of knowledge and uncertainty, and introduced management implications for action.The following data sets are included:Soil accumulations for the North Pacific Landscape Conservation Cooperative- northern California, USASoil...
thumbnail
This dataset represents the historical mean annual area burned per ~ 4 km pixel, averaged for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Historical mean area burned per year (in square meters) per ~4 km pixel was averaged across each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....


    map background search result map search result map Product: Pacific Northwest Forest Soils, Creating a Soil Vulnerability Index to Identify Drought Sensitive Areas - Spatial Data Historical Growing Degree Days (average 1971-2000) for OR and WA, USA Simulated average carbon consumed by fire (1971-2000) for OR and WA, USA Simulated average historical soil carbon (1971-2000) for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated historical surface runoff (1971-2000) for OR and WA, USA Simulated mean historical area burned (1971-2000 average per ~4 km pixel) for OR and WA, USA 4KM Difference: Winter Precipitation (2045-2060) from GFDL-driven RegCM3 climate model (Western US) Pacific Northwest Forest Soils:  Creating a Soil Vulnerability Index to Identify Drought Sensitive Areas Soil Vulnerability to Future Climate Change in the Southern Rockies LCC, with Implications for Vegetation Change and Water Cycle North Pacific LCC Gateway Quantifying vulnerability of quaking aspen woodlands and associate bird communities to global climate change in the northern Great Basin North Pacific LCC Gateway Quantifying vulnerability of quaking aspen woodlands and associate bird communities to global climate change in the northern Great Basin Simulated mean historical area burned (1971-2000 average per ~4 km pixel) for OR and WA, USA Product: Pacific Northwest Forest Soils, Creating a Soil Vulnerability Index to Identify Drought Sensitive Areas - Spatial Data Pacific Northwest Forest Soils:  Creating a Soil Vulnerability Index to Identify Drought Sensitive Areas Simulated average carbon consumed by fire (1971-2000) for OR and WA, USA Historical Growing Degree Days (average 1971-2000) for OR and WA, USA Simulated average historical soil carbon (1971-2000) for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated historical surface runoff (1971-2000) for OR and WA, USA Soil Vulnerability to Future Climate Change in the Southern Rockies LCC, with Implications for Vegetation Change and Water Cycle 4KM Difference: Winter Precipitation (2045-2060) from GFDL-driven RegCM3 climate model (Western US)