Skip to main content
Advanced Search

Filters: Tags: ClimatologyMeteorologyAtmosphere (X) > Types: Downloadable (X)

2,142 results (52ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP4.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
PRISM climate data for Wyoming. Data can be accessed through the Geospatial Data Gateway http://datagateway.nrcs.usda.gov/.
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP8.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
This dataset is a raster of current predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average). 0=Absence; 1=Presence*see Maxent output pdf for details on model parameters.
thumbnail
This dataset is a raster summarizing the change in suitable bioclimate by looking at the difference between current and A2 2050s. Value coding:-3 = Lost bioclimate; 0 = absence (current and future); 1= maintained bioclimate; 4 = gained bioclimate
thumbnail
This dataset is a raster of current predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average). 0=Absence; 1=Presence*see Maxent output pdf for details on model parameters.
thumbnail
This dataset is a raster of current predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average). 0=Absence; 1=Presence*see Maxent output pdf for details on model parameters.
thumbnail
This dataset is a raster summarizing the change in suitable bioclimate by looking at the difference between current and A2 2050s. Value coding:-3 = Lost bioclimate; 0 = absence (current and future); 1= maintained bioclimate; 4 = gained bioclimate
thumbnail
This dataset is a raster summarizing the change in suitable bioclimate by looking at the difference between current and A2 2050s. Value coding:-3 = Lost bioclimate; 0 = absence (current and future); 1= maintained bioclimate; 4 = gained bioclimate
thumbnail
Some of the SNK rasters intentionally do not align or have the same extent. These rasters were not snapped to a common raster per the authors' discretion. Please review selected rasters prior to use. These varying alignments are a result of the use of differing source data sets and all products derived from them. We recommend that users snap or align rasters as best suits their own projects. - This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and baseline climate conditions, and then projecting these correlations into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-5 show...
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster of predicted suitable bioclimate using statistical correlations between known habitat and current climate (1950-1999 average) , and then projecting that niche into the future. The future timeslices used are 2020's, which is an average of 2020-2029, and 2050's which is 2050-2059. The Values 1-6 show the degree of model agreement (For example: areas with a value of 1 is where only 1 GCM predicted suitability; pixels with a value of 6 are where 6 GCMs predicted suitability, ect). *see Maxent output pdfs for more details about model inputs and settings.
thumbnail
This dataset is a raster summarizing the change in suitable bioclimate by looking at the difference between current and A2 2050s. Value coding:-3 = Lost bioclimate; 0 = absence (current and future); 1= maintained bioclimate; 4 = gained bioclimate
thumbnail
This dataset is a raster summarizing the change in suitable bioclimate by looking at the difference between current and A2 2050s. Value coding:-3 = Lost bioclimate; 0 = absence (current and future); 1= maintained bioclimate; 4 = gained bioclimate
thumbnail
Some of the NOS rasters intentionally do not align or have the same extent. These rasters were not snapped to a common raster per the authors' discretion. Please review selected rasters prior to use. These varying alignments are a result of the use of differing source data sets and all products derived from them. We recommend that users snap or align rasters as best suits their own projects. - This file includes a downscaled projection of decadal Mean Annual Ground Temperature at 1 Meter Depth (°C) for the decades 2010-2019, 2020-2029, and 2060-2069 at 2km spatial resolution. It represents the A2 emissions scenario and the spatial extent is the NOS REA study area.
thumbnail
Some of the NOS rasters intentionally do not align or have the same extent. These rasters were not snapped to a common raster per the authors' discretion. Please review selected rasters prior to use. These varying alignments are a result of the use of differing source data sets and all products derived from them. We recommend that users snap or align rasters as best suits their own projects. - This file includes a downscaled projection of decadal average January temperature (in °C) for the decades 2010-2019, 2020-2029, and 2060-2069 at 771x771 meter spatial resolution. The file represents a decadal mean calculated from monthly totals, using the A2 emissions scenario. The spatial extent is clipped to the NOS REA...
thumbnail
Some of the NOS rasters intentionally do not align or have the same extent. These rasters were not snapped to a common raster per the authors' discretion. Please review selected rasters prior to use. These varying alignments are a result of the use of differing source data sets and all products derived from them. We recommend that users snap or align rasters as best suits their own projects. - This file includes a downscaled projection of decadal average May temperature (in °C) for the decades 2010-2019, 2020-2029, and 2060-2069 at 771x771 meter spatial resolution. The file represents a decadal mean calculated from monthly totals, using the A2 emissions scenario. The spatial extent is clipped to the NOS REA study...
thumbnail
Some of the NOS rasters intentionally do not align or have the same extent. These rasters were not snapped to a common raster per the authors' discretion. Please review selected rasters prior to use. These varying alignments are a result of the use of differing source data sets and all products derived from them. We recommend that users snap or align rasters as best suits their own projects. - This file includes a downscaled projection of decadal average of spring (March, April, May) total precipitation (in millimeters) for the decades 2010-2019, 2020-2029, and 2060-2069 at 771x771 meter spatial resolution. The file represents a decadal mean of seasonal totals calculated from monthly totals, using the A2 emissions...
thumbnail
For each variable the per pixel change between the recent time slice (1981-2012) or future timslice (2050s) and the baseline (1900-1980) was calculated, identifying climate “deltas” for each pixel. Recent deltas are 800m resolution and use PRISM as the source dataset. Future deltas are 4km resolution and use ClimateWNA as the source dataset. Delta = later timeslice (recent or future) - baseline. Raster values are expressed in climate units either mm for precipitation or degrees c for temperature. delta ratio values are included for precipitation and CMD, which are ratios of change (1 = no change, < 1 = decreasing, > 1 = increasing).
thumbnail
For each variable the per pixel change between the recent time slice (1981-2012) or future timslice (2050s) and the baseline (1900-1980) was calculated, identifying climate “deltas” for each pixel. Recent deltas are 800m resolution and use PRISM as the source dataset. Future deltas are 4km resolution and use ClimateWNA as the source dataset. Delta = later timeslice (recent or future) - baseline. Raster values are expressed in climate units either mm for precipitation or degrees c for temperature. delta ratio values are included for precipitation and CMD, which are ratios of change (1 = no change, < 1 = decreasing, > 1 = increasing).


map background search result map search result map Precipitation Monthly for February 1971 - 2000 for Wyoming at 1:250,000 Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) BLM REA MAR 2012 Climate "Deltas" 1901_1980_1981_2012_ppt_09 BLM REA MAR 2012 Climate "Deltas" 1901_1980_2040_2069_tmin_07 BLM REA NOS 2012 CL CNL MarchAprilMayPrecipitation LongTerm BLM REA NOS 2012 CL CNL MeanJanuaryTemperature LongTerm BLM REA NOS 2012 CL CNL MeanMayTemperature LongTerm BLM REA NOS 2012 PF CNL MeanAnnualGroundTemperature Current BLM REA MBR 2010 Change Summary - Rocky Mountain Aspen Forest and Woodland BLM REA MBR 2010 Change Summary - Northern Rubber Boa BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Inter-Mountain Basins Mixed Salt Desert Scrub BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Swainsons Hawk BLM REA CBR 2010 Change Summary - Swainsons Hawk BLM REA CBR 2010 Change Summary - Clarks Nutcracker BLM REA CBR 2010 Current Modeled Bioclimate - Pygmy Rabbit BLM REA CBR 2010 Current Modeled Bioclimate - Columbian Sharp Tailed Grouse BLM REA CBR 2010 Change Summary - Northern Rubber Boa BLM REA CBR 2010 Current Modeled Bioclimate - Mojave Rattlesnake BLM REA MAR 2012 Climate "Deltas" 1901_1980_1981_2012_ppt_09 BLM REA MAR 2012 Climate "Deltas" 1901_1980_2040_2069_tmin_07 Precipitation Monthly for February 1971 - 2000 for Wyoming at 1:250,000 BLM REA NOS 2012 CL CNL MarchAprilMayPrecipitation LongTerm BLM REA NOS 2012 CL CNL MeanJanuaryTemperature LongTerm BLM REA NOS 2012 CL CNL MeanMayTemperature LongTerm BLM REA NOS 2012 PF CNL MeanAnnualGroundTemperature Current Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) BLM REA MBR 2010 Change Summary - Rocky Mountain Aspen Forest and Woodland BLM REA MBR 2010 Change Summary - Northern Rubber Boa BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Inter-Mountain Basins Mixed Salt Desert Scrub BLM REA MBR 2010 Modeled Future Bioclimate 2050 - Swainsons Hawk BLM REA CBR 2010 Change Summary - Swainsons Hawk BLM REA CBR 2010 Change Summary - Clarks Nutcracker BLM REA CBR 2010 Current Modeled Bioclimate - Pygmy Rabbit BLM REA CBR 2010 Current Modeled Bioclimate - Columbian Sharp Tailed Grouse BLM REA CBR 2010 Change Summary - Northern Rubber Boa BLM REA CBR 2010 Current Modeled Bioclimate - Mojave Rattlesnake