Skip to main content
Advanced Search

Filters: Tags: Coastal and Marine Geology Program (CMGP) (X)

46 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University...
thumbnail
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University...
thumbnail
The Hudson Shelf Valley is the submerged seaward extension of the ancestral Hudson River drainage system and is the largest physiographic feature on the Middle Atlantic continental shelf. The valley begins offshore of New York and New Jersey at about 30-meter (m) water depth, runs southerly and then southeasterly across the Continental Shelf, and terminates on the outer shelf at about 85-m water depth landward of the head of the Hudson Canyon. Portions of the 150-kilometer-long valley were surveyed in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to map the bathymetry and backscatter...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Citation, Downloadable, Map Service; Tags: 3-m grid, Canadian Coast Guard ship (CCGS) Frederick G. Creed, Canadian Hydrographic Service (CHS), Coastal and Marine Geology Program (CMGP), Esri binary grid, All tags...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University...
thumbnail
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Citation, Downloadable, Map Service; Tags: Coastal and Marine Geology Program (CMGP), Esri binary grid, Hudson Canyon, Middle Atlantic Bight, NOAA ship Ronald H. Brown, All tags...
thumbnail
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Citation, Downloadable, Map Service; Tags: Coastal and Marine Geology Program (CMGP), GeoTIFF image, Hudson Canyon, Middle Atlantic Bight, NOAA ship Ronald H. Brown, All tags...
thumbnail
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration...
thumbnail
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University...


map background search result map search result map GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor southwest of Montauk Point, New York, in 1998 (polyline shapefile, geographic, WGS 84) GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor southwest of Montauk Point, New York, in 1998 (3-m resolution, Mercator, WGS 84) Grid of the sea-floor bathymetry offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84) GeoTIFF image of the backscatter intensity of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1996 (polyline shapefile, geographic, WGS 84) Bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1998 (polyline shapefile, geographic, WGS 84) GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution, Mercator, WGS 84) GeoTIFF image of the backscatter intensity of the sea floor of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 2000 (polyline shapefile, geographic, WGS 84) GeoTIFF image of the shaded-relief bathymetry of the sea floor, colored by backscatter intensity, of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84) GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84) Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 2000 (polyline shapefile, geographic, WGS 84) GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor of the Hudson Shelf Valley (12-m resolution, Mercator, WGS 84) GeoTIFF image of the backscatter intensity of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) Bathymetry of the Hudson Canyon region (100-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor of the Hudson Canyon region carried out in 2002 (polyline shapefile, geographic, WGS 84) GeoTIFF image of shaded-relief bathymetry, illuminated from 315 degrees, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) GeoTIFF image of the shaded-relief bathymetry, pseudo-colored by backscatter intensity, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1996 (polyline shapefile, geographic, WGS 84) GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution, Mercator, WGS 84) GeoTIFF image of the backscatter intensity of the sea floor of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84) GeoTIFF image of the shaded-relief bathymetry of the sea floor, colored by backscatter intensity, of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84) GeoTIFF image of the shaded-relief bathymetry of the Historic Area Remediation Site in 2000 (3-m resolution, Mercator, WGS 84) Bathymetry of the Historic Area Remediation Site in 1998 (3-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1998 (polyline shapefile, geographic, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 2000 (polyline shapefile, geographic, WGS 84) Tracklines of a multibeam survey of the sea floor southwest of Montauk Point, New York, in 1998 (polyline shapefile, geographic, WGS 84) GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor southwest of Montauk Point, New York, in 1998 (3-m resolution, Mercator, WGS 84) GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor offshore of Moriches Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84) Grid of the sea-floor bathymetry offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84) GeoTIFF image of the backscatter intensity of the sea floor offshore of Shinnecock Inlet, New York, in 1998 (3-m resolution, Mercator, WGS 84) Tracklines of a multibeam survey of the Hudson Shelf Valley carried out in 2000 (polyline shapefile, geographic, WGS 84) GeoTIFF image of shaded-relief bathymetry, colored by backscatter intensity, of the sea floor of the Hudson Shelf Valley (12-m resolution, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor of the Hudson Canyon region carried out in 2002 (polyline shapefile, geographic, WGS 84) Bathymetry of the Hudson Canyon region (100-m resolution Esri binary grid and 32-bit GeoTIFF, Mercator, WGS 84) GeoTIFF image of shaded-relief bathymetry, illuminated from 315 degrees, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) GeoTIFF image of the shaded-relief bathymetry, pseudo-colored by backscatter intensity, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) GeoTIFF image of the backscatter intensity of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84)