Skip to main content
Advanced Search

Filters: Tags: Coastal hazards (X) > Date Range: {"choice":"year"} (X)

6 results (78ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
The western coastline of Alaska is highly susceptible to coastal storms, which can cause erosion, flooding, and saltwater storm surge, affecting natural ecosystems, human communities, and commercial activity. Historically, a large buffer of ice along the shoreline has protected this region from some of the more severe effects of coastal storms. However, climate change may not only increase the frequency and intensity of storms, but also cause a loss of shoreline ice, possibly increasing the incidence of coastal erosion and flooding and introducing saltwater to freshwater environments. These hazards have the potential to substantially disrupt the environment and commerce in the region, but more information is needed...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
Categories: Data; Tags: Assateague Island, Assateague Island, Assateague Island National Seashore, Assateague Island National Seashore, Atlantic Ocean, All tags...
thumbnail
Water is a key resource in Alaska: Although it comprises 17 percent of the country’s land area, Alaska contains more than 40 percent of the United States’ surface water. Climate changes are anticipated to greatly impact water processes (hydrology), including water temperature and seasonal precipitation patterns and amounts. Understanding the likely impacts of climate change on hydrology is an important first step toward understanding consequent impacts on natural and human communities. The purpose of this project was to assist with the development of a coordinated state-wide approach for monitoring temperature in streams and lakes. This process was guided by the recommendations of a workshop involving hydrologists,...


    map background search result map search result map Modeling Western Alaska Coastal Hazards Monitoring Alaska Stream and Lake Temperatures to Understand Future Conditions Barrier island geomorphology and seabeach amaranth metrics at 50-m alongshore transects, and 5-m cross-shore points for 2008 — Assateague Island, MD and VA. Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014 Barrier island geomorphology and seabeach amaranth metrics at 50-m alongshore transects, and 5-m cross-shore points for 2008 — Assateague Island, MD and VA. Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2008 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2010 Seabeach Amaranth Presence-Absence Data, Assateague Island National Seashore, 2014 Modeling Western Alaska Coastal Hazards Monitoring Alaska Stream and Lake Temperatures to Understand Future Conditions