Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: Colorado River (X)

310 results (48ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Incision rates of the Colorado River are integral to understanding the development of the Colorado Plateau. Here we calculate episodic incision rates of the Colorado River based on absolute ages of two levels of Quaternary deposits adjacent to Glen Canyon, Utah, along the north flank of Navajo Mountain. Minimum surface ages are determined by a combination of cosmogenic radionuclide surface exposure ages, uranium series and soil-development formation times. Bedrock incision rates of the Colorado River between c. 500 ka and c. 250 ka, and c. 250 ka to present are c. 0·4 m ka−1 and c. 0·7 m ka−1, respectively. These rates are more than double the rates reported in the Grand Canyon, suggesting that the Colorado...
Beavers (Castor canadensis Kuhl) can influence the competitive dynamics of plant species through selective foraging, collection of materials for dam creation, and alteration of hydrologic conditions. In the Grand Canyon National Park, the native Salix gooddingii C.R.Ball (Goodding?s willow) and Salix exigua Nutt. (coyote willow) are a staple food of beavers. Because Salix competes with the invasive Tamarix ramosissima Ledeb., land mangers are concerned that beavers may cause an increase in Tamarix through selective foraging of Salix. A spatial analysis was conducted to assess whether the presence of beavers correlates with the relative abundance of Salix and Tamarix. These methods were designed to detect a system-wide...
The Colorado River system exhibits the characteristics of a heavily over-allocated or ?closing water system?. In such systems, development of mechanisms to allow resource users to acknowledge interdependence and to engage in negotiations and agreements becomes necessary. Recently, after a decade of deliberations and environmental assessments, the Glen Canyon Dam Adaptive Management Program (GCDAMP) was established to monitor and analyze the effects of dam operations on the Grand Canyon ecosystem and recommend adjustments intended to preserve and enhance downstream physical, cultural and environmental values. The Glen Canyon Dam effectively separates the Colorado into its lower and upper basins. Dam operations and...
In many interstate river basins, the institutional arrangements for the governance and management of the shared water resource are not adequately designed to effectively address the many political, legal, social, and economic issues that arise when the demands on the resource exceed the available supplies. Even under normal hydrologic conditions, this problem is frequently seen in the Colorado River Basin. During severe sustained drought, it is likely that the deficiencies of the existing arrangements would present a formidable barrier to an effective drought response, interfering with efforts to quickly and efficiently conserve and reallocate available supplies to support a variety of critical needs. In the United...
thumbnail
This dataset represents the variety (unique structural classes: water, bare, herbaceous, short shrubs, medium shrubs, short trees, tall trees) within 1 ha of bottomland areas. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation of ground qualities. Due to the "snapshot" nature of the aerial photos,...
thumbnail
The vegetation units on this map were determined through a series of image processing steps including unsupervised classification, ecological modeling and stereoscopic interpretation of aerial photographs supported by field sampling and ecological analysis. The vegetation boundaries were identified on the photographs by means of the photographic signature and collateral information on slope, hydrology, geography, and vegetation in accordance with the Standardized National Vegetation Classification System (October 1995). The mapped vegetation reflects conditions that existed during the specific year and season that the aerial photographs were taken. There is a margin of error inherent in the use of aerial photographs....
thumbnail
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the main inflows to Lake Powell. These new data are intended to improve water budget management decisions that affect the natural and recreational resources of the reservoir. Multibeam echosounder bathymetry and...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Antelope Canyon, BOR, Bullfrog, Bullfrog Bay, Bureau of Reclamation, All tags...
thumbnail
These data were compiled for investigating the relationship between acoustic backscattering by riverbeds composed of various riverbed substrates (bed sediment), and for developing and testing a probabilistic model for substrate classification based on high-frequency multibeam acoustic backscatter. The model is described in Buscombe et al. (2017). The data consist of various quantities on coincident grids, from various sites along the Colorado River in Grand Canyon, including water depth, bed roughness, the area (or footprint) of the acoustic beam, unfiltered and filtered backscatter magnitude, sediment classification (for each location, 1 of 5 sediment classes in a categorical scheme), and the probabilities for...
thumbnail
These data consist of species relative cover, percent cover of dead plant material, percent cover of soil and rock, and a variety of broad - and local- scale environmental variables. These data relate to sample sites along the Colorado River through Grand Canyon between Lees Ferry and river mile 245. The plant and ground cover data included here were originally collected as a part of annual vegetation monitoring by Grand Canyon Monitoring and Research Center. Environmental variables were either recorded in the field or obtained through other data sources. Species and ground cover data were collected in August and September 2014 at 96 randomly selected sample sites that were approximately evenly distributed along...
thumbnail
This metadata record describes the materials contained in stake folder 2411. Stake 2411 is located at latitude 36.426, longitude -112.639. This location was photographed in the following years: 1872, 1968 and 1995. The materials associated with this item include original best quality images from each repeat date (preserved as digitized film images or in some cases digitized print photographs, depending on availability), scanned film envelopes with camera metadata, records of repeat photography sheets, and all field notes and/or camera notes associated with this stake. All attachments follow the following naming convention: stake_date_material_type_Kanab. Some stakes will have multiple materials from one repeat date...
thumbnail
This metadata record describes the materials contained in stake folder 1506. Stake 1506 is located at latitude 36.38585, longitude -112.63963. This location was photographed in the following years: 1909 (no physical image) and 1990. The materials associated with this item include original best quality images from each repeat date (preserved as digitized film images or in some cases digitized print photographs, depending on availability), scanned film envelopes with camera metadata, records of repeat photography sheets, and all field notes and/or camera notes associated with this stake. All attachments follow the following naming convention: stake_date_material_type_Kanab. Some stakes will have multiple materials...
thumbnail
This metadata record describes the materials contained in stake folder 2595. Stake 2595 is located at latitude 36.392, longitude -112.629. This location was photographed in the following years: 1942 and 1993. The materials associated with this item include original best quality images from each repeat date (preserved as digitized film images or in some cases digitized print photographs, depending on availability), scanned film envelopes with camera metadata, records of repeat photography sheets, and all field notes and/or camera notes associated with this stake. All attachments follow the following naming convention: stake_date_material_type_Kanab. Some stakes will have multiple materials from one repeat date (e.g.,...
thumbnail
This metadata record describes the materials contained in stake folder 696. Stake 696 is located at latitude 36.39889, longitude -112.63056. This location was photographed in the following years: 1872, 1968 and 1972. The materials associated with this item include original best quality images from each repeat date (preserved as digitized film images or in some cases digitized print photographs, depending on availability), scanned film envelopes with camera metadata, records of repeat photography sheets, and all field notes and/or camera notes associated with this stake. All attachments follow the following naming convention: stake_date_material_type_Kanab. Some stakes will have multiple materials from one repeat...
thumbnail
This metadata record describes the materials contained in stake folder 713. Stake 713 is located at latitude 36.42478, longitude -112.63036. This location was photographed in the following years: 1872 and 1968. The materials associated with this item include original best quality images from each repeat date (preserved as digitized film images or in some cases digitized print photographs, depending on availability), scanned film envelopes with camera metadata, records of repeat photography sheets, and all field notes and/or camera notes associated with this stake. All attachments follow the following naming convention: stake_date_material_type_Kanab. Some stakes will have multiple materials from one repeat date...
thumbnail
These data were collected as part of a methodologial comparison for collecting riparian vegetation data. Two common methods for collecting vegetation data were used: line-point intercept and 1m2 ocular quadrats (visual cover estimates). At each site and transect, both methods were used to collect cover and composition data by four different observers. The same transects and quadrats were utilized for both methods and all observers. Field data collected included percent cover for total living foliar cover, each plant species encountered, litter, dead plant material that is still standing, and ground cover features (biological soil crust, rock, sand, and fine soil particles). Line-point intercept data were collected...
thumbnail
This dataset represents the relative average amount of non-woody cover within 2 ha) of bottomland along the Colorado River from the Colorado state line (San Juan and Grand Counties, Utah) to the southern Canyonlands NP boundary, as of September 2010. Traditional image interpretation cues were used to develop the polygons, such as shape, size, pattern, tone, texture, color, and shadow, from high resolution, true color, aerial imagery (0.3m resolution), acquired for the project. Additional, public available aerial photos (NAIP, 2011) were used to cross-reference cover classes. As with any digital layer, this layer is a representation of what is actually occurring on the ground. Errors are inherent in any interpretation...
thumbnail
With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods...
thumbnail
This map shows the channel boundary (2011) of the Colorado River mainstem between the Utah Colorado border and the upper pool of Lake Powell, Utah (146 miles). The channel boundary was mapped from public available NAIP imagery flown on June 28, 2011, when the river flow was 886 m3/s at the Cisco gage. The channel is subdivided into channel types: fast water (main channel, secondary channel), and still water types (backwater, isolated pool and tributary channel).
thumbnail
This ESRI geodatabase consists of 5 feature datsets with 23 individual polygon feature classes and two raster datasets. A master campsite polygon feature class represents the boundaries of campsites identified in the 1973, 1984, and 1991 campsite inventories of the Colorado River corridor in Grand Canyon, Arizona. The other polygon feature classes represent camp locations along the Colorado River corridor in Grand Canyon, Arizona during different survey periods using different surveying techniques. The raster datasets represent sub-aerial and sub-surface sandbar surfaces at 37 long term-monitoring sites between Lees Ferry and Diamond Creek, Arizona in Grand Canyon National Park, measured in September and October...
thumbnail
The Leadville North 7.5' quadrangle lies at the northern end of the Upper Arkansas Valley, where the Continental Divide at Tennessee Pass creates a low drainage divide between the Colorado and Arkansas River watersheds. In the eastern half of the quadrangle, the Paleozoic sedimentary section dips generally 20–30 degrees east. At Tennessee Pass and Missouri Hill, the core of the Sawatch anticlinorium is mapped as displaying a tight hanging-wall syncline and foot-wall anticline within the basement-cored structure. High-angle, west-dipping, Neogene normal faults cut the eastern margin of the broad, Sawatch anticlinorium. Minor displacements along high-angle, east- and west-dipping Laramide reverse faults occurred in...
Tags: 10Be, 26Al, Belden Formation, Buckeye Peak, Bull Lake glaciation, Camp Hale, All tags...


map background search result map search result map Episodic incision of the Colorado River in Glen Canyon, Utah Colorado National Monument Vegetation Mapping Project - Spatial Vegetation Data Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Riparian Vegetation and Environmental Variables, Colorado River, 2014—Data USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 1506 USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 2411 USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 2595 USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 0696 USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 0713 Geomorphology and Campsite Data, Colorado River, Marble and Grand Canyon, Arizona Multi-century reconstructions of temperature, precipitation, and runoff efficiency for the Upper Colorado River Basin Data release for Geologic Map of the Leadville North 7.5' quadrangle, Eagle and Lake Counties, Colorado Acoustic backscatter - Data and Python Code Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) Riparian vegetation data used for comparing sampling methods along the Colorado River, Grand Canyon, Arizona USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 1506 USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 2411 USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 2595 USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 0696 USGS Southwest Repeat Photography Collection: Kanab Creek, southern Utah and northern Arizona, 1872-2010: Stake 0713 Data release for Geologic Map of the Leadville North 7.5' quadrangle, Eagle and Lake Counties, Colorado Riparian vegetation data used for comparing sampling methods along the Colorado River, Grand Canyon, Arizona Colorado National Monument Vegetation Mapping Project - Spatial Vegetation Data Episodic incision of the Colorado River in Glen Canyon, Utah Conservation Planning for the Colorado River in Utah - Stillness of water for Bat Watering Model Conservation Planning for the Colorado River in Utah - Open Areas for Open Land Species Model Conservation Planning for the Colorado River in Utah - Diversity of All Structural Types for General Diversity Model Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) Geomorphology and Campsite Data, Colorado River, Marble and Grand Canyon, Arizona Riparian Vegetation and Environmental Variables, Colorado River, 2014—Data Acoustic backscatter - Data and Python Code Multi-century reconstructions of temperature, precipitation, and runoff efficiency for the Upper Colorado River Basin