Skip to main content
Advanced Search

Filters: Tags: Colorado River Basin (X) > Extensions: Citation (X)

33 results (183ms)   

Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R(2) values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177 metric tons/month and decreased after remediation...
Goodstein identified and discussed a "Saturday effect" in data on the timing of tanker oil spills. This comment describes two ways in which the validity of the statistical analysis used to identify and confirm this effect can be strengthened.
ABSTRACF: Examination of a series of studies of the economically efficient water allocations in the Upper Colorado River, Yellowstone River, and Great Basins indicate that water is not a serious general physical constraint on the development of energy resources, so long as public institutions do not hinder the exchange of water rights in markets. Energy development will cause limited impacts on other water-using sectors, principally agriculture. There appears to be little reason to develop large-scale water storage facilities, even during periods of reduced water production. Water storage developments appear to be necessary only when institutional constraints severely restrict water rights markets and transfers.
Researchers representing each of the Colorado River Basin states as well as the Secretary of the Interior were presented with an interactive computer simulation of a progressively increasing drought and were given the collective opportunity to change the ways in which basin-wide and within-state water management were conducted. The purpose of this ?gaming? exercise was to identify rules for managing the Colorado River which are effective in preventing drought-caused damages to basin water users. This water management game was conducted three times, varying the collective choice roles for management of the river yet staying substantially within the current institution for management of the Colorado River known as...
The Colorado River Basin faces the dilemma of an increasing demand for water while presently struggling with salinity concentrations approaching critical levels for some water uses. Based upon projected development salinity concentrations are predicted to exceed 1200 mg/1 at Imperial Dam by the year 2010. Annual losses to the basin economy associated with increased salinity will exceed $50 million by the year 2010. Although methods of controlling salt discharges are relatively unrefined, certain conclusions, based upon Bayesian statistical methods, can be reached. Five basic alternatives for coping with the problem are presented and evaluated in this paper: (1) do nothing; (2) adopt arbitrary salinity standards;...
thumbnail
Description: The upper Gila River in New Mexico is one of the few unobstructed rivers in the Colorado River Basin with largely intact native fish populations, including four federally listed and one state listed species.Freshwater systems throughout the West continue to be threatened by human encroachment and water development. Methodologies or decision support tools to evaluate resource management practices that foster an understanding of how fish species adapt to the effects of climate change are critical to future resource management planning.
ABSTRACT: To help meet national energy demands, interest has been focused on the coal, oil shale, and uranium deposits of the Upper Colorado River Basin. Several energy output projections for the basin have been presented based upon water availability. Inherent in all these analyses are estimates as to the rate of water use in each energy development. New energy technologies are characterized by parameters extrapolated from small scale energy facilities. The data provide projected costs, conversion efficiencies, and material inputs and outputs. Alternative techniques for process cooling and solids handling provide variable rates of water use which affect other conversion parameters. Results from a mathematical model...
ABSTRACT Water development in the Green River Basin of Wyoming is projected to increase salinity downstream in the Green River and Colorado River, and thereby increase salinity costs to users of water from these two rivers. Despite these water quality and economic impacts to downstream water users, Wyoming will probably be able to develop its currently unused but allocated water supplies of the Green River Basin. The Colorado River Compact and Upper Colorado River Basin Compact are binding, and protect Wyoming's share of the Colorado River System waters for future use. The argument that water may be used to greater profit downstream is not sufficient to reduce Wyoming's allocation. In addition, the no-injury rule...
thumbnail
To better understand drought occurrence in the Colorado River Basin (CRB) of the southwestern United States we used a hydroclimatic index to create a historical record of drought coverage and analysed the linear trend and relationships with key climate teleconnections. The past century was characterized by an increase in drought coverage during the warm portion of the year almost exclusively as a result of climatic warming. In recent decades, a significant increase in the drought coverage occurred earlier in the year, during the spring season, primarily as a function of warming, but in combination with a decline in precipitation for a significant portion of the basin. The El Ni o (La Ni a) phase of the El Ni o-Southern...
ABSTRACT: To help meet national energy demands, interest has been focused on the coal, oil shale, and uranium deposits of the Upper Colorado River Basin. Several energy output projections for the basin have been presented based upon water availability. Inherent in all these analyses are estimates as to the rate of water use in each energy development. New energy technologies are characterized by parameters extrapolated from small scale energy facilities. The data provide projected costs, conversion efficiencies, and material inputs and outputs. Alternative techniques for process cooling and solids handling provide variable rates of water use which affect other conversion parameters. Results from a mathematical model...
A selenium budget for Lake Powell, Utah-Arizona was determined based on selenium loads at the principal stream input sites to and the output site from the lake. Based on data collected during 1985-1994, 83 percent of the selenium entering Lake Powell is accounted for at the output site. The rest of the selenium may be incorporated by lake sediment or used by the biota. Considerably more selenium per unit area is produced from the Colorado River Basin above the Colorado River-Green River confluence than from the Green River Basin and the San Juan River Basin combined. The Gunnison River Basin and the Grand Valley in Colorado produce an estimated 31 and 30 percent of the selenium that reaches Lake Powell, respectively....
The atmospheric water balance over the upper Colorado River is evaluated twice daily for the seven winter seasons 1957?1963. The atmospheric water balance yields the exchange of water and water vapor at the earth-atmosphere interface through the observation of the spatial and time distributions and fluxes of water vapor in the atmosphere over the basin. The quantity precipitation minus evaporation is determined as a residual of the computation and is accumulated for daily and seasonal values. In addition, a natural period analysis is performed; the natural periods are delineated by homogeneity in the parameter precipitation minus evaporation. The dry periods are shown to exhibit a seasonal trend in evaporation rate...
Availability of long-term information on the variability of water resources in a given area is particularly important for sustainable resource management. Developing watershed simulation models that can be run using annually-resolved proxy climate data provides a way to improve reconstructions of hydrological parameters over multi-century time scales. Through the addition of a snowmelt modeling component, we enhanced a simple water-balance model to simulate streamflow at seasonal resolution. The model was calibrated to the upper Meadow Valley Wash, Nevada, USA, using USGS gage number 09417500 streamflow records. PRISM data at 2.5 arc-min resolution were used to reconstruct streamflow at the seasonal timescale (October...
thumbnail
Dinosaur National Monument, in northwestern Colorado, has become a test case in the establishment of a federal reserved water right to instream flows. For the first time, the Interior Department was forced to rigorously defend its claims in a watershed where the federal government did not control the upstream reaches. Inadequate quantification of minimum flow requirements, court orders, and an apparent Congressional ban on the spending of Water Resources Program funds by the Park Service to quantify its water rights have already placed the Service in a difficult position to protect instream flows for maintaining the ecological integrity of the Monument. As late as 1983, administrators of the Park Service were divided...
Stream discharge and geochemical data were collected at two sites along lower Ashley Creek, Utah, from 1999 to 2003, to assess the success of a site specific salinity and Se remediation project. The remediation project involved the replacement of a leaking sewage lagoon system that was interacting with Mancos Shale and increasing the dissolved salinity and Se load in Ashley Creek. Regression modeling successfully simulated the mean daily dissolved salinity and Se loads (R(2) values ranging from 0.82 to 0.97) at both the upstream (AC1) and downstream (AC2/AC2A) sites during the study period. Prior to lagoon closure, net gain in dissolved-salinity load exceeded 2177 metric tons/month and decreased after remediation...
A study was performed to identify sources of solute loading to the Dirty Devil River and its major tributaries, in southeastern Utah. A primary goal was to determine the contribution of gypsum dissolution to total dissolved solids concentration, and its potential increase in the future if salinity control measures are instituted. Synoptic field data were collected during the low flow period in October 1983. Data were analyzed using the geochemistry models WATEQF and BALANCE to postulate mineral reactions leading to solute loading. Three known sources of solute loading, involving two different geochemical mechanisms, were clearly discernable. Two additional areas of possible gypsum dissolution were located. Published...
Water development in the Green River Basin of Wyoming is projected to increase salinity downstream in the Green River and Colorado River, and thereby increase salinity costs to users of water from these two rivers. Despite these water quality and economic impacts to downstream water users, Wyoming will probably be able to develop its currently unused but allocated water supplies of the Green River Basin. The Colorado River Compact and Upper Colorado River Basin Compact are binding, and protect Wyoming's share of the Colorado River System waters for future use. The argument that water may be used to greater profit downstream is not sufficient to reduce Wyoming's allocation. In addition, the no-injury rule under the...
Mountain snowpack is the main source of water in the semi-arid Colorado River Basin (CRB), and while the demands for water are increasing, competing and often conflicting, the supply is limited and has become increasingly variable over the 20th Century. Greater variability is believed to contribute to lower accuracy in water supply forecasts, plus greater variability violates the assumption of stationarity, a fundamental assumption of many methods used in water resources engineering planning, design and management. Thus, it is essential to understand the underpinnings of hydroclimatic variability in order to accurately predict effects of climate changes and effectively meet future water supply challenges. A new...
Changes in the hydrologic equilibrium of a river basin resulting from resource development also produce changes in the quality pattern. since the burden of quality maintenance must be shared by users (just as are quantities) predictions are needed for quality changes which might result from contemplated development at any specified location within the river system. This study reports the development of a computer simulation model of the water and salt flow systems within the Upper Colorado River Basin. Because of the close relationship between the hydrologic and salinity flow systems, an understanding of the hydrologic system is essential to successful management of the salinity system. In this study development...
ABSTRACT: To help meet national energy demands, interest has been focused on the coal, oil shale, and uranium deposits of the Upper Colorado River Basin. Several energy output projections for the basin have been presented based upon water availability. Inherent in all these analyses are estimates as to the rate of water use in each energy development. New energy technologies are characterized by parameters extrapolated from small scale energy facilities. The data provide projected costs, conversion efficiencies, and material inputs and outputs. Alternative techniques for process cooling and solids handling provide variable rates of water use which affect other conversion parameters. Results from a mathematical model...


map background search result map search result map A hydroclimatic index for examining patterns of drought in the Colorado River Basin Dinosaur National Monument: The evolution of a federal reserved water right Science Brief for Resource Managers: Metacommunity Dynamics of Gila River Fishes Dinosaur National Monument: The evolution of a federal reserved water right Science Brief for Resource Managers: Metacommunity Dynamics of Gila River Fishes A hydroclimatic index for examining patterns of drought in the Colorado River Basin