Skip to main content
Advanced Search

Filters: Tags: Coral Reefs (X) > partyWithName: PCMSC Science Data Coordinator (X)

29 results (12ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D model results were subsequently used as forcing conditions for Delwaq models to simulate sediment transport and dispersion. The Delwaq models were used to simulate sediment transport and concentrations under the same two wave and stream discharge scenarios. The Delwaq models were run using forcing conditions generated by...
thumbnail
Time-series data of water-surface elevation, wave height, water-column currents, temperature were acquired for 6 days off the north coast of the island of Kauai, Hawaii in support of a study on the coastal circulation patterns and groundwater input to the coral reefs of Makua.
thumbnail
This data release includes representative cluster profiles (RCPs) from a large (>24,000) selection of coral reef topobathymetric cross-shore profiles (Scott and others, 2020). We used statistics, machine learning, and numerical modelling to develop the set of RCPs, which can be used to accurately represent the shoreline hydrodynamics of a large variety of coral reef-lined coasts around the globe. In two stages, the data were reduced by clustering cross-shore profiles based on morphology and hydrodynamic response to typical wind and swell wave conditions. By representing a large variety of coral reef morphologies with a reduced number of RCPs, a computationally feasible number of numerical model simulations can be...
thumbnail
This portion of the data release presents a bathymetric point cloud from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The point cloud has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The point cloud was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a pressure sensor was deployed in the survey area to gain an accurate measurement of the water surface elevation (WSE). After a preliminary dense point cloud was derived from SfM processing, the WSE was used to calculate...
thumbnail
This portion of the data release presents a bathymetric digital surface model (DSM) from an unoccupied aerial system (UAS) survey of the coral reef off Waiakane, Molokai, Hawaii, on 24 June 2018. The DSM has a horizontal resolution of 10 centimeters per pixel and has been corrected for the effects of refraction using the techniques described in Dietrich (2017a). The DSM was created from structure-from-motion (SfM) processing of aerial imagery collected using a UAS with a Ricoh GR II digital camera fitted with a circular polarizing filter. During the survey, a pressure sensor was deployed in the survey area to derive an accurate measurement of the mean water surface elevation (WSE). After a preliminary dense point...
thumbnail
This data set consists of physics-based Delft3D-FLOW and SWAN hydrodynamic models input files used to study the wave-induced 3D flow over spur-and-groove (SAG) formations. SAG are a common and impressive characteristic of coral reefs. They are composed of a series of submerged shore-normal coral ridges (spurs) separated by shore-normal patches of sediment (grooves) on the fore reef of coral reef environments. Although their existence and geometrical properties are well documented, the literature concerning the hydrodynamics around them is sparse. Here, the three-dimensional flow patterns over SAG formations, and a sensitivity of those patterns to waves, currents, and SAG geometry were examined. Shore-normal shoaling...
thumbnail
Spatial surveys of water column physical properties were acquired with a conductivity-temperature-depth (CTD) profiler for four days in February 2015 and one day in July 2015 off the north coast of the island of Tutuila, American Samoa in support of a study on the coastal circulation patterns within and in the vicinity of the National Park of American Samoa.
thumbnail
Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project, phase 5 (CMIP5), were used as boundary conditions to the physics-based WAVEWATCH3 numerical wave model for the area encompassing the main Hawaiian islands. Two climate change scenarios for each of the four GCMs...
thumbnail
A set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate how varying carbonate budgets, and thus coral reef accretion and degradation, affect alongshore variations in wave-driven water levels along the adjacent shoreline of Buck Island Reef National Monument (BUIS) for a number of sea-level rise scenarios, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompany the modeling conducted for the following publication: Toth, L.T., Storlazzi, C.D., Kuffner, I.B., Quataert, E., Reyns, J., McCall, R.T., Stathakopoulos, A., Hillis-Starr,...
thumbnail
Time series data of water surface elevation, wave height, and water column currents and temperature were acquired at seven locations for 86 days off of Waiakane on the south coast of the island of Molokai, Hawaii, in support of a study on the coastal circulation patterns and the transformation of surface waves over the coral reefs.
thumbnail
Spatial surveys of water column currents and surface winds were conducted from February 17 to 20, 2015, off the north coast of the island of Tutuila, American Samoa. These data were collected using an acoustic-doppler current profiler (ADCP) and a meterological sensor in support of a study on the coastal circulation patterns within and in the vicinity of the National Park of American Samoa.
thumbnail
Schematic atoll models with varying theoretical morphologies were used to evaluate the relative control of individual morphological parameters on alongshore transport gradients. Here we present physics-based numerical SWAN model results of incident wave transformations for a range of atoll and island morphologies and sea-level rise scenarios. Model results are presented in NetCDF format, accompanied by a README text file that lists the parameters used in each model run. These data accompany the following publication: Shope, J.B., and Storlazzi, C.D., 2019, Assessing morphologic controls on atoll island alongshore sediment transport gradients due to future sea-level rise: Frontiers in Marine Science, doi:10.3389/fmars.2019.00245.
thumbnail
Time-series data of water surface elevation, wave height, and water column currents, temperature and salinity were acquired for 150 days off the north coast of the island of Tutuila, American Samoa in support of a study on the coastal circulation patterns within and in the vicinity of the National Park of American Samoa. Table of filenames and data types for each netCDF file within the archive zip files: Filename Variables Measured Depth StartDate EndDate Site M1 - AMS16M1.zip AMS15M1M01ct.nc temp, salinity, pressure 2.0 14-Feb-2015 29-May-2015 AMS15M1M21tl.nc temp 6.6 14-Feb-2015 15-Apr-2015 AMS15M1M22tl.nc temp 6.6 15-Apr-2015 14-Jun-2015 AMS15M1M31tl.nc temp 12.1 14-Feb-2015 15-Apr-2015 AMS15M1M31tl.nc...
thumbnail
Satellite-tracked, DGPS-equipped Lagrangian surface-current drifter deployments were conducted over 12 weeks between 14 April and 7 July 2015 at various locations within and offshore of the National Park of American Samoa study area to track surface currents. The drifters internally logged their location every 1 minute, and they transmitted their positions to satellites every 5 minutes. A drogue was attached to the drifters at 1 m below sea level in order to track the currents at that depth.
thumbnail
We developed the HyCReWW metamodel to predict wave run-up under a wide range of coral reef morphometric and offshore forcing characteristics. Due to the complexity and high dimensionality of the problem, we assumed an idealized one-dimensional reef profile, characterized by seven primary parameters. XBeach Non-Hydrostatic was chosen to create the synthetic dataset and Radial Basis Functions implemented in Matlab were chosen for interpolation. Results demonstrate the applicability of the metamodel to obtain fast and accurate results of wave run-up for a large range of intrinsic coral reef morphologic and extrinsic hydrodynamic forcing parameters, offering a useful tool for risk management and early warning systems....
thumbnail
This data release includes the XBeach input data files used to evaluate the importance of explicitly modeling sea-swell waves for runup. This was examined using a 2D XBeach short wave-averaged (surfbeat, XB-SB) and a wave-resolving (non-hydrostatic, XB-NH) model of Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands. Results show that explicitly modelling the sea-swell component (using XB-NH) provides a better approximation of the observed runup than XB-SB (which only models the time-variation of the sea-swell wave height), despite good model performance of both models on reef flat water levels and wave heights. However, both models under-predict runup peaks. The difference between XB-SB and...
thumbnail
Using global climate model projections of sea-surface temperature at coral reef sites, we modeled the effects of depth and exposure to semidiurnal temperature fluctuations to examine how these effects may alter the projected year of annual severe bleaching for coral reef sites globally. Here we present the first global maps of the effects these processes have on bleaching projections for three IPCC-AR5 emissions scenarios.


map background search result map search result map Vessel-mounted acoustic-doppler current profiler (ADCP) and surface-wind data from the National Park of American Samoa, Tutuila, American Samoa, 2015 Conductivity-Temperature-Depth (CTD) profile data in the National Park of American Samoa, Tutuila, American Samoa, 2015 Time-series oceanographic data from the National Park of American Samoa, Tutuila, American Samoa, 2015 Lagrangian ocean surface drifter deployments off the National Park of American Samoa, Tutuila, American Samoa, 2015 Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Time-series oceanographic data collected off Makua, Kauai, USA, August 2016 Nearshore Electrical Resistivity Tomography (ERT) profile data, Makua, Kauai, USA, August 2016 Time-series oceanographic data of currents and waves from bottom-mounted instrument packages off Waiakane, Molokai, HI, 2018 Model parameter input files to compare wave-averaged versus wave-resolving XBeach coastal flooding models for coral reef-lined coasts Time-series oceanographic data collected from reef flat and lagoon sediment dynamics packages in 2016 off Jurabi Point, Ningaloo Reef, Western Australia (ver. 2.0) Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Pharmaceuticals and personal care products measured in passive samplers at seven coastal sites off West Maui during February and March 2017 Nearshore Electrical Resistivity Tomography (ERT) profile data, Makua, Kauai, USA, August 2016 Refraction-corrected bathymetric digital surface model (DSM) from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Refraction-corrected bathymetric point cloud from the UAS survey of the coral reef off Waiakane, Molokai, Hawaii, 24 June 2018 Time-series oceanographic data collected off Makua, Kauai, USA, August 2016 Time-series oceanographic data of currents and waves from bottom-mounted instrument packages off Waiakane, Molokai, HI, 2018 Model parameter input files to compare wave-averaged versus wave-resolving XBeach coastal flooding models for coral reef-lined coasts Time-series oceanographic data collected from reef flat and lagoon sediment dynamics packages in 2016 off Jurabi Point, Ningaloo Reef, Western Australia (ver. 2.0) Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument Time-series oceanographic data from the National Park of American Samoa, Tutuila, American Samoa, 2015 Vessel-mounted acoustic-doppler current profiler (ADCP) and surface-wind data from the National Park of American Samoa, Tutuila, American Samoa, 2015 Conductivity-Temperature-Depth (CTD) profile data in the National Park of American Samoa, Tutuila, American Samoa, 2015 Lagrangian ocean surface drifter deployments off the National Park of American Samoa, Tutuila, American Samoa, 2015 Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii Pharmaceuticals and personal care products measured in passive samplers at seven coastal sites off West Maui during February and March 2017 Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands