Skip to main content
Advanced Search

Filters: Tags: DataBasin (X) > partyWithName: Conservation Biology Institute (X)

20 results (60ms)   

View Results as: JSON ATOM CSV
thumbnail
Climate data (NCEP: Average Annual Temperature, 1968-1999) have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET web site (http://users.ictp.it/RegCNET/model.html), and the ICTP RegCM publications...
thumbnail
This dataset depicts the Difference for Average Summer Temperature for Jul-Sep for 2045-2060 compared to 1968-1999 for GFDL. These data have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET...
thumbnail
Simulated Surface Runoff by the biogeography model MAPSS using S. Hostetler's (USGS) climate data (detailed information available at http://regclim.coas.oregonstate.edu/domains.html), created using RegCM3 with GFDL boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well...
thumbnail
This dataset represents the average amount of Growing Degree Days (GDD) per year within each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Growing degree days (referenced to 0oC) (unit = deg C days) were determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries. They were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). The MC1 model...
thumbnail
This dataset represents the average carbon consumed by fire for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Carbon in biomass consumed by fire, in g m-2 yr-1, was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al. 2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, OR and WA, for a project funded by the USDA Forest Service (PNW 09-JV-11261900-003). The MC1 model was run using historical data...
thumbnail
This dataset represents the historical majority vegetation type (30 year mode), for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Majority vegetation type was determined for each HUC5 watershed by calculating the 30 year mode from original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, a nd wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....
thumbnail
Simulated Surface Runoff by the biogeography model MAPSS using S. Hostetler's (USGS) climate data (detailed information available at http://regclim.coas.oregonstate.edu/domains.html), created using RegCM3 with GENMOM boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well...
thumbnail
This dataset depicts the Difference of Winter Precipitation for 2045-2060 compared to 1968-1999 for GFDL. These data have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET web site (http://users.ictp.it/RegCNET/model.html),...
thumbnail
This dataset represents the historical majority vegetation type (30 year mode), for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Majority vegetation type was determined for each HUC5 watershed by calculating the 30 year mode from original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, a nd wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....
thumbnail
Simulated Surface Runoff by the biogeography model MAPSS using S. Hostetler's (USGS) climate data (detailed information available at http://regclim.coas.oregonstate.edu/domains.html), created using RegCM3 with ECHAM5 boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well...
thumbnail
This dataset represents the average surface runoff for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Mean surface runoff (in mm H2O yr-1), was determined for each HUC5 watershed by averaging values of original ~ 4 km raster data. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The MC1 model was...
thumbnail
Simulated Surface Runoff Change by the biogeography model MAPSS using S. Hostetler's (USGS) climate data (detailed information available at http://regclim.coas.oregonstate.edu/domains.html), created using RegCM3 with GENMOM boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation)...
thumbnail
Simulated Surface Runoff Change by the biogeography model MAPSS using S. Hostetler's (USGS) climate data (detailed information available at http://regclim.coas.oregonstate.edu/domains.html), created using RegCM3 with ECHAM5 boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation)...
thumbnail
This dataset represents the average amount of soil carbon within each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Soil carbon, in g m-2, was determined for each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003). The MC1 model was run using historical data and future climate change projections...
thumbnail
Simulated Surface Runoff by the biogeography model MAPSS using PRISM climate. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds, the model defines the following plant functional types: evergreen needleleaf or...
thumbnail
This dataset depicts the Difference of Average Annual Average Precipitation for 2045-2060 compared to 1968-1999 for GFDL. These data have been generated using a regional climate model called RegCM3 using boundary conditions from observations or general circulation models for historical conditions, and from GCM projections for future conditions. Regional climate model description: RegCM3 is the third generation of the Regional Climate Model originally developed at the National Center for Atmospheric Research during the late 1980s and early 1990s. Details on current model components and applications of the model can be found in numerous publications (e.g., Giorgi et al, 2004a,b, Pal et al, 2007), the ICTP RegCNET...
thumbnail
This dataset displays the boundaries of Intact Forest Landscapes for the Tongass region of the state of Alaska. Intact Forest Landscapes are defined as areas at least 50,000 hectares that are absent of human disturbance visible on satellite imagery (e.g., roads, logging, mining, settlement). For more information, see the full report, available on the Global Forest Watch website (www.globalforestwatch.org), or the Conservation Biology Institute website (http://www.consbio.org/cbi/projects/show.php?page=alaska).
thumbnail
This dataset represents the historical mean annual area burned per ~ 4 km pixel, averaged for each HUC5 watershed, simulated by the model MC1 for the 30-year period 1971-2000. Historical mean area burned per year (in square meters) per ~4 km pixel was averaged across each HUC5 watershed. Watersheds represent 5th level (HUC5, 10-digit) hydrologic unit boundaries and were acquired from the Natural Resources Conservation Service. Background: The dynamic global vegetation model MC1 (see Bachelet et al.2001) was used to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget, and wild fire impacts for OR, WA, AZ and NM, for a project funded by the USDA Forest Service (PNW09-JV-11261900-003)....
thumbnail
Simulated Surface Runoff Change by the biogeography model MAPSS using S. Hostetler's (USGS) climate data (detailed information available at http://regclim.coas.oregonstate.edu/domains.html), created using RegCM3 with GFDL boundary conditions. MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report. MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as...


    map background search result map search result map Alaska's Intact Forest Landscapes - Tongass 4KM Original: Average Summer Temperature (1968-1999) from NCEP-driven RegCM3 climate model (Western US) 4KM Difference: Average Summer Temperature for Jul-Sep (2045-2060) from GFDL-driven RegCM3 climate model (Western US) Historical Growing Degree Days (average 1971-2000) for OR and WA, USA MAPSS vegetation classes for Oregon and Washington, USA Simulated average carbon consumed by fire (1971-2000) for OR and WA, USA Simulated average historical soil carbon (1971-2000) for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated historical surface runoff (1971-2000) for OR and WA, USA Simulated mean historical area burned (1971-2000 average per ~4 km pixel) for OR and WA, USA 4KM Results: Surface Runoff Change (2015-2060) simulated by MAPSS using RegCM3 with ECHAM5 boundary conditions 4KM Results: Surface Runoff Change (2015-2060) simulated by MAPSS using RegCM3 with GENMOM boundary conditions 4KM Results: Surface Runoff Change (2045-2060) simulated by MAPSS using RegCM3 with GFDL boundary conditions 4KM Results: Surface Runoff (1968-1999) simulated by MAPSS using PRISM climate 4KM Results: Surface Runoff (2015-2060) simulated by MAPSS using RegCM3 with ECHAM5 boundary conditions 4KM Results: Surface Runoff (2015-2060) simulated by MAPSS using RegCM3 with GENMOM boundary conditions 4KM Results: Surface Runoff (2045-2060) simulated by MAPSS using RegCM3 with GFDL boundary conditions 4KM Difference: Total Average Annual Precipitation (2045-2060) from GFDL-driven RegCM3 climate model (Western US) 4KM Difference: Winter Precipitation (2045-2060) from GFDL-driven RegCM3 climate model (Western US) MAPSS vegetation classes for Oregon and Washington, USA Simulated mean historical area burned (1971-2000 average per ~4 km pixel) for OR and WA, USA Alaska's Intact Forest Landscapes - Tongass Simulated average carbon consumed by fire (1971-2000) for OR and WA, USA Historical Growing Degree Days (average 1971-2000) for OR and WA, USA Simulated average historical soil carbon (1971-2000) for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated historical majority vegetation type (1971-2000: 30 yr mode) for OR and WA, USA Simulated historical surface runoff (1971-2000) for OR and WA, USA 4KM Original: Average Summer Temperature (1968-1999) from NCEP-driven RegCM3 climate model (Western US) 4KM Difference: Average Summer Temperature for Jul-Sep (2045-2060) from GFDL-driven RegCM3 climate model (Western US) 4KM Results: Surface Runoff Change (2015-2060) simulated by MAPSS using RegCM3 with ECHAM5 boundary conditions 4KM Results: Surface Runoff Change (2015-2060) simulated by MAPSS using RegCM3 with GENMOM boundary conditions 4KM Results: Surface Runoff Change (2045-2060) simulated by MAPSS using RegCM3 with GFDL boundary conditions 4KM Results: Surface Runoff (1968-1999) simulated by MAPSS using PRISM climate 4KM Results: Surface Runoff (2015-2060) simulated by MAPSS using RegCM3 with ECHAM5 boundary conditions 4KM Results: Surface Runoff (2015-2060) simulated by MAPSS using RegCM3 with GENMOM boundary conditions 4KM Results: Surface Runoff (2045-2060) simulated by MAPSS using RegCM3 with GFDL boundary conditions 4KM Difference: Total Average Annual Precipitation (2045-2060) from GFDL-driven RegCM3 climate model (Western US) 4KM Difference: Winter Precipitation (2045-2060) from GFDL-driven RegCM3 climate model (Western US)