Skip to main content
Advanced Search

Filters: Tags: Decomposition (X) > Types: Journal Citation (X)

20 results (51ms)   

View Results as: JSON ATOM CSV
The most common system responses attributed to microfloral grazers (protozoa, nematodes, microarthropods) in the literature are increased plant growth, increased N uptake by plants, decreased or increased bacterial populations, increased CO2 evolution, increased N and P mineralization, and increased substrate utilization. Based on this evidence in the literature, a conceptual model was proposed in which microfloral grazers were considered as separate state variables. To help evaluate the model, the effects of microbivorous nematodes on microbial growth, nutrient cycling, plant growth, and nutrient uptake were examined with reference to activities within and outside of the rhizosphere. Blue grama grass (Bouteloua...
Shifts in plant community structure in shrub and grass-dominated ecosystems are occurring over large land areas in the western US. It is not clear what effect this vegetative change will have on rates of carbon and nitrogen cycling, and thus long-term ecosystem productivity. To study the effect of different plant species on the decomposability of soil organic substrates and rates of C- and N-cycling, we conducted laboratory incubations of soils from a 15-yr-old experimental plot where big sagebrush (Artemisia tridentata Nutt.) and crested wheatgrass (Agropyron desertorum [Fisch.] Schult.) plants had been planted in a grid pattern. Soil samples collected from beneath crested wheatgrass had significantly greater total...
N limitation to primary production and other ecosystem processes is widespread. To understand the causes and distribution of N limitation, we must understand the controls of biological N fixation. The physiology of this process is reasonably well characterized, but our understanding of ecological controls is sparse, except in a few cultivated ecosystems. We review information on the ecological controls of N fixation in free-living cyanobacteria, vascular plant symbioses, and heterotrophic bacteria, with a view toward developing improved conceptual and simulation models of ecological controls of biological N fixation. A model (Howarth et al. 1999) of cyanobacterial fixation in lakes (where N fixation generally increases...
Decomposition of grass leaf litter was studied on a shortgrass prairie using chemicals (HgCl2 and CuSO4) to prevent microbial activity (abiotic treatment), 53??m nylon mesh to exclude mesofauna (microbial treatment), and l?mm nylon mesh to allow the access of mesofauna. After 9 months, 15.2% of the blue grama grass litter was decomposed in the microbial treatment, and 29.4% was decomposed in the microbial plus mesofaunal treatment. After 7 months, 6.2% of the litter had disappeared from the abiotic treatment. There was a general decrease in C:N ratios with the microbial treatment lowest at the end of the experiment. Total available carbohydrates generally decreased with time. Certain mite families fluctuated with...
In arid ecosystems, abiotic processes facilitate the physical and chemical degradation of plant litter to the extent that decomposition models that use climatic and litter composition variables as surrogates for microbial activity are not predictive. The purpose of this study was to estimate the potential contribution of photodegradation to the decomposition of plant litters that varies in architecture and chemical composition. Litter of Pinus edulis, Juniperus monosperma and Populus deltoides were exposed to ambient and attenuated sunlight, with and without supplemental water additions, at a riparian forest site along the Middle Rio Grande (New Mexico, USA). Mass loss, elemental composition, and microbial extracellular...
thumbnail
Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out experimental manipulations involving ecosystem warming and prolonged summer drought in ericaceous shrublands across a European climate gradient. We used retractable covers to create artificial nighttime warming and prolonged summer drought to 20-m 2 experimental plots. Combining the data from across the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls...
thumbnail
The shortgrass steppe is a semi-arid grassland, where elevated CO2 reduces stomatal conductance and promotes soil moisture storage. Enhanced biomass growth from elevated CO2 has been attributed in part to soil moisture effects. However, the influence of this soil moisture feedback on C cycling has received little attention. We used open-top chambers to increase atmospheric CO2 concentrations to twice-ambient for four growing seasons. Soil respiration rates and stable C isotopes of soil CO2 were measured during the third and fourth seasons. Elevated CO2 increased soil respiration rates by ?25% in a moist growing season and by ?85% in a dry season. Stable C isotope partitioning of soil respiration into its components...
1 Phenolics are an important, biologically reactive component of the carbon (C) pool that moves from plants to soil. Once in soil, phenolics can regulate plant?soil feedbacks because of their influence on soil nitrogen biogeochemistry. 2 Roots are a largely overlooked potential source of below-ground phenolic C. We examined phenolic fluxes from plants to soil in an alpine ecosystem, where phenolics are associated with slow rates of nutrient cycling. Using a phenolic-rich forb (Acomastylis rossii) and a grass with low tissue phenolics (Deschampsia caespitosa), we asked whether leaves, leaf litter or roots are the dominant source of soil phenolics during the growing season. We also determined whether the composition...
Shifts in plant community structure in shrub and grass-dominated ecosystems are occurring over large land areas in the western US. It is not clear what effect this vegetative change will have on rates of carbon and nitrogen cycling, and thus long-term ecosystem productivity. To study the effect of different plant species on the decomposability of soil organic substrates and rates of C- and N-cycling, we conducted laboratory incubations of soils from a 15-yr-old experimental plot where big sagebrush (Artemisia tridentata Nutt.) and crested wheatgrass (Agropyron desertorum [Fisch.] Schult.) plants had been planted in a grid pattern. Soil samples collected from beneath crested wheatgrass had significantly greater total...
Aiming at an improved understanding of the conditional nature of soil organic matter stability, we present an overview of (1) biotic strategies and (2) ecological processes by which decomposer organisms gain access to, or are prevented from metabolising soil organic resources. The biotic strategies discussed comprise well-known activities, such as the release of exo-enzymes, the mechanical crushing of organic residues, the bioturbation of soil mass, and the fixation of carbon in the living biomass. The ecological processes described have received less attention regarding their importance in prolonging the persistence of soil organic matter. Model calculations illustrate that cell energy demand forces micro-organisms...
Patterns and processes involved in litter breakdown on desert river floodplains are not well understood. We used leafpacks containing Fremont cottonwood (Populus deltoides subsp. wislizenii) leaf litter to investigate the roles of weather and microclimate, flooding (immersion), and macroinvertebrates on litter organic matter (OM) and nitrogen (N) loss on a floodplain in a cool-temperate semi-arid environment (Yampa River, northwestern Colorado, USA). Total mass of N in fresh autumn litter fell by 20% over winter and spring, but in most cases there was no further N loss prior to termination of the study after 653 days exposure, including up to 20 days immersion during the spring flood pulse. Final OM mass was 10?40%...
The amount of carbon plants allocate to mycorrhizal symbionts exceeds that emitted by human activity annually. Senescent ectomycorrhizal roots represent a large input of carbon into soils, but their fate remains unknown. Here, we present the surprising result that, despite much higher nitrogen concentrations, roots colonized by ectomycorrhizal (EM) fungi lost only one-third as much carbon as non-mycorrhizal roots after 2 years of decomposition in a piñon pine (Pinus edulis) woodland. Experimentally excluding live mycorrhizal hyphae from litter, we found that live mycorrhizal hyphae may alter nitrogen dynamics, but the afterlife (litter-mediated) effects of EM fungi outweigh the influences of live fungi on root...
Aiming at an improved understanding of the conditional nature of soil organic matter stability, we present an overview of (1) biotic strategies and (2) ecological processes by which decomposer organisms gain access to, or are prevented from metabolising soil organic resources. The biotic strategies discussed comprise well-known activities, such as the release of exo-enzymes, the mechanical crushing of organic residues, the bioturbation of soil mass, and the fixation of carbon in the living biomass. The ecological processes described have received less attention regarding their importance in prolonging the persistence of soil organic matter. Model calculations illustrate that cell energy demand forces micro-organisms...
We tested the hypothesis that decomposition in flood-inundated patches of riparian tree leaf litter results in higher plant-available nitrogen in underlying, nutrient-poor alluvium. We used leafpacks (n=56) containing cottonwood (Populus deltoides ssp. wislizenii) leaf litter to mimic natural accumulations of leaves in an experiment conducted on the Yampa River floodplain in semi-arid northwestern Colorado, USA. One-half of the leafpacks were set on the sandy alluvial surface, and one-half were buried 5 cm below the surface. The presence of NO3? and NH4+ presumed to result from a leafpack?s submergence during the predictable spring flood pulse was assessed using an ion-exchange resin bag (IER) placed beneath each...
thumbnail
Herbivore alteration of litter inputs may change litter decomposition rates and influence ecosystem nutrient cycling. In a semiarid woodland at Sunset Crater National Monument, Arizona, long-term insect herbivore removal experiments and the presence of herbivore resistant and susceptible pinyon pines (Pinus edulis) have allowed characterization of the population- and community-level effects of herbivory. Here we report how these same two herbivores, the mesophyll-feeding scale insect Matsucoccus acalyptus and the stem-boring moth Dioryctria albovittella alter litter quality, dynamics, and decomposition in this ecosystem. We measured aboveground litterfall, litter chemical composition, and first-year litter decomposition...
thumbnail
Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded,...
Although the link between the nitrogen (N): phosphorus (P) stoichiometry of biota and availability has received considerable attention in aquatic systems, there has been relatively little effort to compare the elemental composition of biota and supply in terrestrial habitats. In this study, I explored the effects of a prominent topo-edaphic gradient, from dry hilltop to wet slope-base, and native ungulates on N and P of soils, plants, and rates of in situ net mineralization in grasslands of Yellowstone National Park. Nitrogen and P measurements were made May?September, 2000, in paired, grazed and 38?42 year fenced, ungrazed grassland at five topographically variable sites. Similar to findings from other grassland...
Traditional models of soil organic matter decomposition predict that soil carbon pools with high chemical stability and large physical structure are more resistant against degradation than chemically labile and fine-grained material. We investigated whether soil fauna, by its direct and indirect effects on carbon turnover, would reinforce or counteract this general trend. The effects of four major faunal groups on carbon pools of differing recalcitrance were studied in an extensive microcosm experiment. Ninty-six microcosms were inoculated with nematodes, enchytraeids, collembola, and lumbricids in three densities, including combinations of groups. Bare agricultural soil and soil covered with maize litter were used...
The distribution and turnover of plant litter contribute to soil structure, the availability of plant nutrients, and regional budgets of greenhouse gasses. Traditionally, studies of decomposition have focused on the upper soil profile. Other work has shown that temperature, precipitation, and soil texture are important determinates of patterns of decomposition. Since these factors all vary through a soil profile, it has been suggested that decomposition rates may vary with depth in a soil profile. In this work, we examine patterns of root decomposition through a shortgrass steppe soil profile. We buried fresh root litter from Bouteloua gracilis plants in litterbags at 10, 40, 70, and 100 cm. Litterbags were retrieved...
thumbnail
Fluxes of dissolved organic matter (DOM) are an important vector for the movement of carbon (C) and nutrients both within and between ecosystems. However, although DOM fluxes from throughfall and through litterfall can be large, little is known about the fate of DOM leached from plant canopies, or from the litter layer into the soil horizon. In this study, our objectives were to determine the importance of plant-litter leachate as a vehicle for DOM movement, and to track DOM decomposition [including dissolve organic carbon (DOC) and dissolved organic nitrogen (DON) fractions], as well as DOM chemical and isotopic dynamics, during a long-term laboratory incubation experiment using fresh leaves and litter from several...


    map background search result map search result map Elevated atmospheric CO 2 effects and soil water feedbacks on soil respiration components in a Colorado grassland Soil Biota Can Change after Exotic Plant Invasion: Does This Affect Ecosystem Processes? Composition, Dynamics, and Fate of Leached Dissolved Organic Matter in Terrestrial Ecosystems: Results from a Decomposition Experiment Insect Herbivory Increases Litter Quality and Decomposition: An Extension of the Acceleration Hypothesis The Response of Soil Processes to Climate Change: Results from Manipulation Studies of Shrublands Across an Environmental Gradient Insect Herbivory Increases Litter Quality and Decomposition: An Extension of the Acceleration Hypothesis Elevated atmospheric CO 2 effects and soil water feedbacks on soil respiration components in a Colorado grassland Soil Biota Can Change after Exotic Plant Invasion: Does This Affect Ecosystem Processes? The Response of Soil Processes to Climate Change: Results from Manipulation Studies of Shrublands Across an Environmental Gradient