Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: Delaware River Basin (X)

14 results (38ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
In 2012, catchments were generated in the Delaware River Basin for 8-digit HUCs in the areas underlain by the Marcellus Shale (all of 02040101, 02040102, 02040103, 02040104; and headwater areas of 02040106 and 02040203) based on the National Hydrography Dataset (NHD) Strahler first- and second-order streams. There were areas that did not have a catchment generated so another methodology needed to be used in an attempt to fill in the 'gap areas'. A 900-cell, flow accumulation raster generated for the Pennsylvania StreamStats application was used as a surrogate stream layer with the same Strahler ordering system applied to help fill in the 'gap areas'. Points were manually placed at the downstream end of the Strahler...
thumbnail
These datasets present offstream water use estimates from 2010 which are aggregated to the 8-digit (subbasin) and 12-digit (subwatershed) hydrologic unit level for the Delaware River Basin. The data support USGS Scientific Investigations Report 2015-5142.
thumbnail
Water-quality samples were collected from the Upper Delaware Scenic and Recreational River (UPDE) and its tributaries during the period October 1, 2005, to September 30, 2007, to document existing water quality, determine relations between land use and water quality, and identify areas of water-quality concern. A tiered water-quality monitoring framework was used, with the tiers consisting of intensively sampled sites, gradient sites representing the range of land uses present in the basin, and regional stream-survey sites. Median nitrate and total phosphorous concentrations were 1.15 and 0.01 milligrams per liter (mg/L) for three sites on the mainstem Delaware River, 1.27 and 0.009 mg/L for the East Branch Delaware...
thumbnail
The Watershed Priority Area boundaries designate the boundaries of the site specific work for the William Penn Foundation Watershed Protection Grant Center. This file was updated as of 10/11/2013.
thumbnail
Delhi has experienced severe flooding along the West Branch Delaware River (fig. 1); most notably during January, 1996, June, 2006, and October, 2010, and August, 2011. Emergency responders would benefit from a library of flood-inundation maps that are referenced to the stages recorded at the USGS streamgage upstream from Delhi. By referring to the appropriate map, emergency responders could discern the severity of flooding (depth of water and aerial extent), identify roads that are or will soon be flooded, and make plans for notification or evacuation of residents in harm’s way based on current and near-future flood levels. Digital flood-inundation maps for a 5 mile reach of the West Branch Delaware River through...
thumbnail
Problem - A variety of factors potentially impact natural resources in the Neversink River basin and in other tributaries to the Upper Delaware River along the New York, Pennsylvania, and New Jersey boarders in the northeastern US. Increased urbanization within most watersheds of the Delaware River has decreased forested lands and ground permeability; fractionated forests, streams, and rivers; impounded flowing waters, and discharged municipal, agricultural, and industrial pollutants into many waterways. The effects on water quality and hydrology have been quantified relatively well. The direct impacts of these perturbations on biological components of stream and river ecosystems are sometimes known, however, more...
thumbnail
This dataset presents offstream water use estimates from 2010 which are aggregated to the 12-digit (subwatershed) hydrologic unit level for the Delaware River Basin. The data support USGS Scientific Investigations Report 2015-5142.
thumbnail
American Eel (Anguilla Rostrata) Background The U.S. Geological Survey (USGS) has worked in cooperation with The Nature Conservancy (TNC) over the past 11 years to study the effects of channel geomorphology and impoundments on the distribution of common and rare mussels in the Neversink River and to characterize fish assemblages in tributaries to the Upper Delaware River in New York, Pennsylvania, and New Jersey. The focus of this research and monitoring program has recently shifted toward studies of the rapidly declining American eel (Anguilla rostrata) populations in rivers of the tri-state region. There are many factors that could potentially cause the observed declines in local and continental populations of...
thumbnail
Background Every day, the New York City Department of Environmental Protection (DEP) supplies more than one billion gallons of drinking water to more than nine million people. To do this, the DEP maintains an extensive network of reservoirs and aqueducts. A major part of this system, the West of Hudson (WOH) network, in the Delaware and Hudson River drainages, includes six reservoirs (fig. 1) – Ashokan, Cannonsville, Neversink, Pepacton, Rondout, and Schoharie – which were constructed from the early 1900s to the 1960s and have an estimated combined storage capacity of more than 460 billion gallons. Problem and Objective The daily and seasonal management of the WOH reservoirs by DEP depends on accurate bathymetric...
thumbnail
This dataset presents offstream water use estimates from 2010 which are aggregated to the 8-digit (subbasin) hydrologic unit level for the Delaware River Basin. The data support USGS Scientific Investigations Report 2015-5142.
thumbnail
Background / Problem Hurricane Irene Figure 1 shows the declared counties for Hurricane Irene (FEMA) Five to ten inches of rain from Hurricane Irene produced widespread moderate to major flooding throughout eastern New York August 28-30. Highest rainfall totals occurred in the Catskill Mountains of southeastern New York where over 18-inches of rain was reported at Maplecrest, NY. Record water-surface elevations and streamflows were recorded at 60 USGS streamgages and 2 lake/reservoirs. Provisional recurrence intervals of peak flows exceeded the 100-yr flood (1 percent annual chance flood) at 25 USGS streamgages. Provisional recurrence intervals of peak flows exceeded the 500-yr flood (0.2 percent annual chance...
thumbnail
Problem Samples were collected from 10 Key Point sites in the New York City Reservoir system as part of the cooperative USGS-New York State Department of Environmental Conservation (NYSDEC) statewide pesticide monitoring project ( Phillips and others, 2000). Ten pesticides were detected in the key-point samples collected between January 1999 and September 2000 - the herbicides atrazine, metolachlor, simazine and prometon, the herbicide degradates deethylatrazine, hydroxyatrazine, alachlor ethanesulfonic acid (ESA), metolachlor ESA, and metolachlor oxanilic acid (OA), and the insecticide diazinon. Concentrations for most of these detections were generally low (between 0.001 and 0.05 ug/L), with the exception of...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Biogeochemical and Hydrologic Assessment, Biogeochemical and Hydrologic Assessment, BiogeochemicalandHydrologicAssessment, Completed, Contaminants, Emerging, All tags...
thumbnail
Following Hurricane Sandy, the USGS began construction of an overland Surge, Wave, and Tide Hydrodynamics (SWaTH) Network along the Northeastern Atlantic Coast from North Carolina to Maine. This network, developed collaboratively with numerous partners, features the integration of long-term tide gage networks, with real-time rapid-deployment gages (RDG) and mobile storm-tide sensors (STS). An element of the comprehensive strategy of SWaTH ensures that locations for most RDGs and STSs have been presurveyed to the North American Vertical Datum of 1988 (NAVD 88) and equipped with receiving brackets. This permits rapid deployment and recovery of instrumentation and data dissemination in the hours and days immediately...


    map background search result map search result map William Penn Watershed Cluster Priority Areas Water Quality of the Upper Delaware Scenic and Recreational River and Tributary Streams, New York and Pennsylvania Natural Resources of the Neversink River Watershed Assessing American Eel Populations in Tributaries to the Upper Delaware River Flood-Inundation Maps for the West Branch Delaware River, Delhi, New York Organic Wastewater and Pesticide Monitoring at Key Points in the New York City Reservoir System Bathymetry of New York City's West of Hudson Reservoirs Floods of 2011 in New York Coastal Storm Response Surge, Wave, and Tide Hydrodynamics Network (SWaTH) Delaware River Basin Catchments Based on Strahler Stream Order 1 from National Hydrography Dataset (NHD) Stream Centerline Features for 8-digit HUC Flood-Inundation Maps for the West Branch Delaware River, Delhi, New York Natural Resources of the Neversink River Watershed Bathymetry of New York City's West of Hudson Reservoirs Water Quality of the Upper Delaware Scenic and Recreational River and Tributary Streams, New York and Pennsylvania Assessing American Eel Populations in Tributaries to the Upper Delaware River Organic Wastewater and Pesticide Monitoring at Key Points in the New York City Reservoir System Delaware River Basin Catchments Based on Strahler Stream Order 1 from National Hydrography Dataset (NHD) Stream Centerline Features for 8-digit HUC William Penn Watershed Cluster Priority Areas Floods of 2011 in New York Coastal Storm Response Surge, Wave, and Tide Hydrodynamics Network (SWaTH)