Skip to main content
Advanced Search

Filters: Tags: Dissolved Organic Carbon (DOC) (X)

5 results (42ms)   

View Results as: JSON ATOM CSV
A quantitative understanding of the factors controlling the variation of dissolved organic carbon (DOC) in headwater streams is of scientific concern for at least two reasons. First, quantifying the overall carbon budgets of lotic systems is needed for a fundamental understanding of these systems. Second, DOC interacts strongly with other dissolved substances (heavy metals in particular) and plays an important role in the transport of contaminants. In the Snake River near Montezuma, Colorado, measurements of DOC from 1980 to 1986 show rapid decreases in concentration from a peak very early in the snowmelt period. Peak DOC concentrations occur approximately one month prior to peak discharge in the stream. The decline...
Recent studies have found insignificant or decreasing trends in time-series dissolved organic carbon (DOC) datasets, questioning the assumption that long-term DOC concentrations in surface waters are increasing in response to anthropogenic forcing, including climate change, land use, and atmospheric acid deposition. We used the Weighted Regressions on Time, Discharge, and Season (WRTDS) model to estimate annual flow-normalized (FN) concentrations and fluxes to determine if changes in DOC quantity and quality signal anthropogenic forcing at 10 locations in the Mississippi River Basin (MRB). Despite increases in agriculture and urban development throughout the basin, net increases in DOC concentration and flux were...
Effects of large-scale weed invasion on the nature and magnitude of moisture-pulse-driven soil processes in semiarid ecosystems are not clearly understood. The objective of this study was to monitor carbon dioxide (CO2) and nitrous oxide (N2O) emissions and changes in soil carbon (C) and nitrogen (N) following the application of a water pulse in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) communities dominated by the exotic annual grass cheatgrass (Bromus tectorum) and by the native perennial grass western wheatgrass (Pascopyrum smithii). Sampling locations were established in shrub interspaces dominated by B. tectorum and P. smithi and beneath shrub canopies adjacent to interspaces dominated...
thumbnail
Fluxes of dissolved organic matter (DOM) are an important vector for the movement of carbon (C) and nutrients both within and between ecosystems. However, although DOM fluxes from throughfall and through litterfall can be large, little is known about the fate of DOM leached from plant canopies, or from the litter layer into the soil horizon. In this study, our objectives were to determine the importance of plant-litter leachate as a vehicle for DOM movement, and to track DOM decomposition [including dissolve organic carbon (DOC) and dissolved organic nitrogen (DON) fractions], as well as DOM chemical and isotopic dynamics, during a long-term laboratory incubation experiment using fresh leaves and litter from several...
Abstract (from http://iopscience.iop.org/1748-9326/9/5/055005): Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14 C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13 C-DOC, Δ 14 C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier...


    map background search result map search result map Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming, USA Composition, Dynamics, and Fate of Leached Dissolved Organic Matter in Terrestrial Ecosystems: Results from a Decomposition Experiment Composition, Dynamics, and Fate of Leached Dissolved Organic Matter in Terrestrial Ecosystems: Results from a Decomposition Experiment