Skip to main content
Advanced Search

Filters: Tags: Drought, Fire and Extreme Weather (X)

717 results (42ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This data release is provided in support of Arismendi, I., Dunham, J.B., Heck, M.P., Schultz, L.D., Hockman-Wert, D.P., 2017, A statistical method to predict flow permanence in dryland streams from time series of stream temperature: Water, v. 9, no. 12, p. 946, https://doi.org/10.3390/w9120946. This code release contains all of the source code from the "Hidden Markov Model" sections of the associated manuscript. The source code was written using the R programming language (www.r-project.org, version 3.3.1). Running the code requires knowlege of the R programming language. The code snippet requires the folder location containing the data, and the site being processed, to be updated. The code requires certain R packages,...
There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations...
Climate policy developers and natural resource managers frequently desire high-resolution climate data to prepare for future effects of climate change. But they face a long-standing problem: the vast majority of climate models have been run at coarse resolutions—from hundreds of kilometers in global climate models (GCMs) down to 25–50 kilometers in regional climate models (RCMs).
The Eastern Shoshone and Northern Arapaho Tribes on the Wind River Indian Reservation in Wyoming are preparing for drought and other climate fluctuations with help from a broad coalition of scientists. Read More: https://www.drought.gov/drought/sites/drought.gov.drought/files/media/whatisnidis/Newsletter/October%202015%20v4.pdf
Members of the Eastern Shoshone and Northern Arapaho Tribes have been working with an interdisciplinary team of social, ecological, and climate scientists from the North Central CSC, the High Plains Regional Climate Center, and the National Drought Mitigation Center along with other university and agency partners to prepare regular climate and drought summaries to aid in managing water resources on the Wind River Reservation and in surrounding areas.
Abstract (from ESA): Estimating population size and resource selection functions (RSFs) are common approaches in applied ecology for addressing wildlife conservation and management objectives. Traditionally such approaches have been undertaken separately with different sources of data. Spatial capture–recapture (SCR) provides a hierarchical framework for jointly estimating density and multi‐scale resource selection, and data integration techniques provide opportunities for improving inferences from SCR models. Despite the added benefits, there have been few applications of SCR‐RSF integration, potentially due to complexities of specifying and fitting such models. Here, we extend a previous integrated SCR‐RSF model...
Abstract (from PNAS): Recent decades have seen droughts across multiple US river basins that are unprecedented over the last century and potentially longer. Understanding the drivers of drought in a long-term context requires extending instrumental data with paleoclimatic data. Here, a network of new millennial-length streamflow reconstructions and a regional temperature reconstruction from tree rings place 20th and early 21st century drought severity in the Upper Missouri River basin into a long-term context. Across the headwaters of the United States’ largest river basin, we estimated region-wide, decadal-scale drought severity during the “turn-of-the-century drought” ca. 2000 to 2010 was potentially unprecedented...
Abstract (from AGU 100): This study investigates snowmelt and streamflow responses to cloudiness variability across the mountainous parts of the western United States. Twenty years (1996–2015) of Geostationary Operational Environmental Satellite‐derived cloud cover indices (CC) with 4‐km spatial and daily temporal resolutions are used as a proxy for cloudiness. The primary driver of nonseasonal fluctuations in daily mean solar insolation is the fluctuating cloudiness. We find that CC fluctuations are related to snowmelt and snow‐fed streamflow fluctuations, to some extent (correlations of <0.5). Multivariate linear regression models of daily snowmelt (MELT) and streamflow (ΔQ) variations are constructed for each...
Abstract (from http://www.bioone.org/doi/abs/10.3417/2017006): The Earth system is undergoing rapid, profound anthropogenic change. The primary axes of change include not only the climate system, but also the spread of invasive species, altered biogeochemical and hydrological cycles, modified disturbance regimes, and land degradation and conversion. These factors are influencing the distribution of species and the structure and function of ecosystems worldwide, interacting with climatic stressors that may preclude the persistence of many current species distributions and communities. Ecological disturbances such as wildfires and insect outbreaks can interact with climate variability to precipitate abrupt change...
Severe droughts cause widespread tree mortality and decreased growth in forests across the globe. Forest managers are seeking strategies to increase forest resistance (minimizing negative impacts during the drought) and resilience (maximizing recovery rates following drought). Limited experimental evidence suggests that forests with particular structural characteristics have greater capacity to resist change and or recover ecosystem function in the face of drought. However, the applicability of these results to practical forest conservation and management remains unclear. This project utilized an existing network of eight long-term, operational-scale, forest management experiments from Arizona to Maine to examine...
Exposure (vulnerability) index for the future time period (2061-2080) representing projected climate conditions from the Meteorological Research Institute's Coupled Atmosphere-Ocean General Circulation Model, version 3, and the rcp85 emissions scenario. The exposure model uses LANDFIRE vegetation data and Worldclim climate data .The raster values represent exposure scores for the corresponding vegetation type. The modeled vegetation types can be spatially associated with the exposure values by overlaying them with the "landfire_veg_sw_300m.tif" raster.Exposure values represent where the location falls in climate space relative to its recent historical distribution:5 (core 5% of historical climate space); 10 (5 -...
A new method for automatic detection of atmospheric rivers (ARs) is developed and applied to an atmospheric reanalysis, yielding an extensive catalog of ARs land-falling along the west coast of North America during 1948–2017. This catalog provides a large array of variables that can be used to examine AR cases and their climate-scale variability in exceptional detail. The new record of AR activity, as presented, validated and examined here, provides a perspective on the seasonal cycle and the interannual-interdecadal variability of AR activity affecting the hydroclimate of western North America. Importantly, AR intensity does not exactly follow the climatological pattern of AR frequency. Strong links to hydroclimate...
thumbnail
To assess the current topography of the tidal marshes we conducted survey-grade elevation surveys at all sites between 2009 and 2013 using a Leica RX1200 Real Time Kinematic (RTK)Global Positioning System (GPS) rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems Inc., Norcross, GA; Figure 4). At sites with RTK network coverage (San Pablo, Petaluma, Pt. Mugu, and Newport), rover positions were received in real time from the Leica Smartnet system via a CDMA modem (www.lecia-geosystems.com). At sites without network coverage (Humboldt, Bolinas, Morro and Tijuana), rover positions were received in real time from a Leica GS10 antenna base station via radio link. When using the base station, we adjusted...
Climate change is affecting species and ecosystems across the Northeast and Midwest U.S. Natural resource managers looking to maintain ecological function and species persistence have requested information to improve resource management in the face of climate change. Leveraging the research that has already been supported by the Northeast Climate Adaptation Science Center and its partners, this project used the latest modeling techniques combined with robust field data to examine the impact of specific climate variables, land use change, and species interactions on the future distribution and abundance of species of conservation concern. An interdisciplinary team worked to understand the mechanisms that are driving...
This management brief summarizes the results of a project evaluating the scientific body of research on climate adaptation actions relevant to ecological drought. This adaptation science assessment evaluated strategies developed and prioritized by participants at regional adaptation workshops by synthesizing supporting evidence from the literature. The brief presents findings on the benefits and limitations of these climate adaptation options from the accompanying report, Extremes to Ex-Streams: Ecological Drought Adaptation in a Changing Climate.


map background search result map search result map Tijuana: Tidal Marsh Digital Elevation Model Tijuana: Tidal Marsh Digital Elevation Model