Skip to main content
Advanced Search

Filters: Tags: EDDI (X)

3 results (6ms)   

View Results as: JSON ATOM CSV
EDDI is a drought indicator that uses atmospheric evaporative demand (E0) anomalies across a time-window of interest relative to its climatology to indicate the spatial extent and severity of drought. This page provides access to near-real-time (with a five-day latency, i.e., the most recent information is five days old) EDDI plots with time windows integrating E0 anomalies from 1 to 12 weeks and 1 to 12 months from the most current date. E0 is calculated using the Penman Monteith FAO56 reference evapotranspiration formulation driven by temperature, humidity, wind speed, and incoming solar radiation from the North American Land Data Assimilation System (NLDAS-2) dataset. For a particular time-window, EDDI is estimated...
This project facilitated the engagement of the North Central Climate Adaptation Science Center’s (NC CASC) Climate Foundational Science Area (FSA) to identify and address the physical climate science challenges that are important for ecologists and natural resource managers in the NC CASC region, as well as meet their needs for climate information to assess impacts to their desired system and develop strategies for effective climate adaptation. A drought index called the Landscape Evaporative Response Index (LERI) was developed to provide a near real-time assessment of soil moisture conditions across the Contiguous United States (CONUS) based on satellite observations. This projects also supported development of...
This 2-pager describes the Evaporative Demand Drought Index (EDDI), which is a drought index that can serve as an indicator of both rapidly evolving “flash” droughts (developing over a few weeks) and sustained droughts (developing over months but lasting up to years).