Skip to main content
Advanced Search

Filters: Tags: EHP (X)

147 results (107ms)   

View Results as: JSON ATOM CSV
thumbnail
This inventory was originally reated by Sekiguchi and Sato (2006) describing the landslides triggered by a sequence of earthquakes, with the largest being the M 6.6 Niigata-Chuetsu, Japan earthquake that occurred on 23 October 2004 at 08:56:00 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory includes landslides triggered by a sequence of earthquakes rather than a single mainshock. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data...
thumbnail
The St. Louis area has experienced minor earthquake damage at least 12 times in the past 205 years. The St. Louis metropolitan area, with a population of about 2.8 million, faces earthquake hazard from large earthquakes in the New Madrid and Wabash Valley seismic zones, as well as a closer region of diffuse historical and prehistoric seismicity to its south and east. Also, low attenuation of seismic energy in the region and a substantial number of historic older unreinforced brick and stone buildings make the St. Louis area vulnerable to moderate earthquakes at relatively large distances compared to the western United States. This geotechnical database was compiled by James Palmer and others at the Missouri Department...
thumbnail
The 2014 update of the U.S. Geological Survey (USGS) National Seismic Hazard Model (NSHM) for the conterminous United States (2014 NSHM; Petersen and others, 2014; https://pubs.usgs.gov/of/2008/1128/) included probabilistic ground motion maps for 2 percent and 10 percent probabilities of exceedance in 50 years, derived from seismic hazard curves for peak ground acceleration (PGA) and 0.2 and 1.0 second spectral accelerations (SAs) with 5 percent damping for the National Earthquake Hazards Reduction Program (NEHRP) site class boundary B/C (time-averaged shear wave velocity in the upper 30 meters [VS30]=760 meters per second [m/s]). This data release provides 0.1 degree by 0.1 degree gridded seismic hazard curves,...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
EXPO-CAT is a catalog of human exposure to discrete levels of shaking intensity, obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. EXPO-CAT is derived from two key datasets: the PAGER-CAT earthquake catalog and the Atlas of ShakeMaps. PAGER-CAT provides accurate earthquake source information necessary to compute reliable ShakeMaps in the Atlas. It also contributes loss information (i.e., number of deaths and injuries) from historical events. Using historical earthquakes in the Atlas and...
thumbnail
The datasets for this investigation consist of microtremor array data collected at: 1) 18 sites in Salt Lake and Utah valleys, Utah, and 2) two sites as part of the Frontier Observatory for Research in Geothermal Energy (FORGE) near Milford, Utah. Each of the 18 sites in the Salt Lake and Utah valleys were acquired with four-sensor arrays with three-component (3C) sensors having flat response from 0.033 Hz to 50 Hz. The data acquired as part of the FORGE investigation used both 3C broadband and 5-Hz geophone sensors. Additional information on these datasets can be found in the supporting documentation provided in this data release as well as in the paper by Zhang and others (2019) that utilized these data.
thumbnail
The “Database of Central and Eastern North American Seismic Velocity Structure” involves the compilation of one-dimensional (1D) seismic velocity-depth functions for central and eastern North America (CENA). The present database is an update of the report by Chulick and Mooney (2002) who present a compilation and statistical analysis of 1D seismic velocity-depth functions for North America and its margins. All seismic velocity-depth functions are extracted from peer-reviewed journal articles, with 86% derived from active-source seismic refraction profiles and the remaining 14% from receiver functions or local earthquake tomography models. No reanalysis of the original seismic field data was undertaken. The database...
thumbnail
This inventory was originally created by Harp and Jibson (1995) describing the landslides triggered by the M 6.7 Northridge, California earthquake that occurred on 17 January 1994 at 12:30:55 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S....
thumbnail
This inventory was originally created by Lacroix and others (2013) describing the landslides triggered by the M8 Pisco, Peru earthquake that occurred on 2007-08-15 at 23:40:58 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
This inventory was originally created by Huang and Lee (1999) describing the landslides triggered by the M5.7 Jueili, Taiwan earthquake that occurred on 1998-07-17 at 04:51:15 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
This inventory describes the landslides triggered by the M7.0 Sicily, Italy earthquake that occurred on 1908-12-28 at 4:20:26 UTC. The inventory comes from the Italian Catalogue of Earthquake-Induced Ground Effects (Italian acronym CEDIT) by Martino and others (2014), which contains inventories from multiple earthquakes. To obtain the most up to date version of the entire, original catalog along with more details about its compilation, please visit the CEDIT webpage on the website of the Centre for Research (CERI) of the Department of Earth Sciences in the Sapienza University of Rome: http://www.ceri.uniroma1.it/index.php/web-gis/cedit/. Care should be taken when comparing with other inventories because different...
The updated 2018 National Seismic Hazard Model includes new ground motion models, aleatory uncertainty, and soil amplification factors for the central and eastern U.S. and incorporates basin depths from local seismic velocity models in four western U.S. (WUS) urban areas. These additions allow us, for the first time, to calculate probabilistic seismic hazard curves for an expanded set of spectral periods (0.01 s to 10 s) and site classes (VS30 = 150 m/s to 1,500 m/s) for the conterminous U.S. (CONUS), as well as account for amplification of long-period ground motions in deep sedimentary basins in the Los Angeles, San Francisco Bay, Salt Lake City, and Seattle regions. Ground motion data for 2, 5, and 10 percent...
thumbnail
The USGS Geologic Hazards Science Center (GHSC) in Golden, CO maintains a GIS server with services pertaining to various geologic hazard disciplines involving earthquakes and landslides. The online link provides an overview of the structure of this server and also outlines the GIS data it contains. The folders named eq (earthquakes), haz (earthquake hazards), and ls (landlsides) contain services with data associated with each discipline.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.


map background search result map search result map Harp and Jibson (1995) Sekiguchi and Sato (2006) Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Data Release for Additional Period and Site Class Maps for the 2014 National Seismic Hazard Model for the Conterminous United States Huang and Lee (1999) Lacroix and others (2013) Martino and others (2014) - M7.0 Sicily, Italy, 1908 A Bayesian Monte-Carlo Inversion of Spatial Auto-Correlation (SPAC) for Near-Surface Vs Structure Applied to Both Broadband and Geophone Data - Data Release Data Release for Additional Period and Site Class Data for the 2018 National Seismic Hazard Model for the Conterminous United States (ver. 1.2, May 2021) Database of Central and Eastern North American Seismic Velocity Structure St. Louis Geotechnical Database, v2003 Sekiguchi and Sato (2006) Huang and Lee (1999) Martino and others (2014) - M7.0 Sicily, Italy, 1908 Harp and Jibson (1995) Lacroix and others (2013) A Bayesian Monte-Carlo Inversion of Spatial Auto-Correlation (SPAC) for Near-Surface Vs Structure Applied to Both Broadband and Geophone Data - Data Release Slab2 - A Comprehensive Subduction Zone Geometry Model, Cotabato Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Calabria Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Sulawesi Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Puysegur Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Scotia Sea Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Solomon Islands Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Manila Trench Region Slab2 - A Comprehensive Subduction Zone Geometry Model, Ryukyu Region Data Release for Additional Period and Site Class Maps for the 2014 National Seismic Hazard Model for the Conterminous United States Data Release for Additional Period and Site Class Data for the 2018 National Seismic Hazard Model for the Conterminous United States (ver. 1.2, May 2021) Database of Central and Eastern North American Seismic Velocity Structure