Skip to main content
Advanced Search

Filters: Tags: Earthquake (X) > partyWithName: U.S. Geological Survey (X)

62 results (103ms)   

View Results as: JSON ATOM CSV
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
The database contains uniformly processed ground motion intensity measurements (peak horizontal ground motions and 5-percent-damped pseudospectral accelerations for oscillator periods 0.1–10 s). The earthquake event set includes more than 3,800 M≥3 earthquakes in Oklahoma and Kansas from January 2009 to December 2016. Ground motion time series were collected out to 500 km. We also relocated the majority of the earthquake hypocenters using a multiple-event relocation algorithm to produce a set of near-uniformly processed hypocentral locations. Details about data processing are reported in the accompanying article. First posted - October 11, 2017 Revised - December 18, 2017, ver. 1.1
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
This is a catalog of precise relocations of earthquakes surrounding the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption. These were generated using using surface-wave double-difference measurements, and relative magnitudes were computed between events. For details of the methodology used to produce this catalog, and the interpretation of these data, see the Seismological Research Letter publication "High-Precision Characterization of Seismicity from the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption". Locations use the WGS 1984 Datum. One comma-separated table is provided in this data release, relocations.csv, which is a summary of the relocation magnitude analysis. It includes 18 columns: Column 1 (time):...
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
A one-year seismic hazard forecast for the Central and Eastern United States, based on induced and natural earthquakes, has been produced by the U.S. Geological Survey. The model assumes that earthquake rates calculated from several different time windows will remain relatively stationary and can be used to forecast earthquake hazard and damage intensity for the year 2016. This assessment is the first step in developing an operational earthquake forecast for the CEUS, and the analysis could be revised with updated seismicity and model parameters. Consensus input models consider alternative earthquake catalog durations, smoothing parameters, maximum magnitudes, and ground motion estimates, and represent uncertainties...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...
thumbnail
On April 25, 2015, a large ( M7.8) earthquake shook much of central Nepal and was followed by a series of M>6 aftershocks, including a M7.3 event on May 12, 2015. This earthquake and aftershocks, referred to as the Gorkha earthquake sequence, caused thousands of fatalities, damaged and destroyed entire villages, and displaced millions of residents. The earthquakes also triggered thousands of landslides in the exceedingly steep topography of Nepal; these landslides were responsible for hundreds of fatalities, and blocked vital roads and trails to affected villages. With the support of the United States Agency for International Development (USAID), Office of Foreign Disaster Assistance (OFDA), and in collaboration...


map background search result map search result map Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05272015-H Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05272015-J Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-C Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-I Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-J Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05292015-D Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05302015-A Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05302015-B Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05302015-C Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05302015-I Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_06012015-A Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_06012015-B Modified Mercalli Intensity based on peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Western United States Modified Mercalli Intensity based on horizontal spectral response acceleration for 1.0-second period, with 1-percent probability of exceedance in 1 year for the Western United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States Chance of damage from an earthquake in 2016 based on horizontal spectral response acceleration for 1.0-second period for the Western United States A database of instrumentally recorded ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas High-Precision Seismicity Catalog for the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence A database of instrumentally recorded ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas High-Precision Seismicity Catalog for the 2022 Hunga Tonga-Hunga Ha-apai Volcanic Eruption Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05272015-H Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05272015-J Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-C Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-I Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05282015-J Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05292015-D Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05302015-A Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05302015-B Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05302015-C Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_05302015-I Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_06012015-A Video data files to accompany USGS OFR 2015-1142--Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence:  USGS_Nepal_06012015-B Modified Mercalli Intensity based on peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Western United States Modified Mercalli Intensity based on horizontal spectral response acceleration for 1.0-second period, with 1-percent probability of exceedance in 1 year for the Western United States Chance of damage from an earthquake in 2016 based on horizontal spectral response acceleration for 1.0-second period for the Western United States Modified Mercalli Intensity based on the average of horizontal spectral response acceleration for 1.0-second period and peak ground acceleration, with 1-percent probability of exceedance in 1 year for the Central and Eastern United States