Skip to main content
Advanced Search

Filters: Tags: Energy budget (X) > Categories: Publication (X)

3 results (13ms)   

View Results as: JSON ATOM CSV
Evapotranspiration determined using the energy-budget method at a semi-permanent prairie-pothole wetland in east-central North Dakota, USA was compared with 12 other commonly used methods. The Priestley-Taylor and deBruin-Keijman methods compared best with the energy-budget values; mean differences were less than 0.1 mm d−1, and standard deviations were less than 0.3 mm d−1. Both methods require measurement of air temperature, net radiation, and heat storage in the wetland water. The Penman, Jensen-Haise, and Brutsaert-Stricker methods provided the next-best values for evapotranspiration relative to the energy-budget method. The mass-transfer, deBruin, and Stephens-Stewart methods provided the worst comparisons;...
Evapotranspiration determined using the energy-budget method at a semi-permanent prairie-pothole wetland in east-central North Dakota, USA was compared with 12 other commonly used methods. The Priestley-Taylor and deBruin-Keijman methods compared best with the energy-budget values; mean differences were less than 0.1 mm d−1, and standard deviations were less than 0.3 mm d−1. Both methods require measurement of air temperature, net radiation, and heat storage in the wetland water. The Penman, Jensen-Haise, and Brutsaert-Stricker methods provided the next-best values for evapotranspiration relative to the energy-budget method. The mass-transfer, deBruin, and Stephens-Stewart methods provided the worst comparisons;...
We review the sea-level and energy budgets together from 1961, using recent and updated estimates of all terms. From 1972 to 2008, the observed sea-level rise (1.8 ± 0.2 mm yr−1 from tide gauges alone and 2.1 ± 0.2 mm yr−1 from a combination of tide gauges and altimeter observations) agrees well with the sum of contributions (1.8 ± 0.4 mm yr−1) in magnitude and with both having similar increases in the rate of rise during the period. The largest contributions come from ocean thermal expansion (0.8 mm yr−1) and the melting of glaciers and ice caps (0.7 mm yr−1), with Greenland and Antarctica contributing about 0.4 mm yr−1. The cryospheric contributions increase through the period (particularly in the 1990s) but the...
Categories: Publication; Types: Citation; Tags: aerosol, energy budget, sea level