Skip to main content
Advanced Search

Filters: Tags: Environmental Microbiology (X)

6 results (7ms)   

View Results as: JSON ATOM CSV
To determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 microg C g(-1) of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reducer and denitrifier communities whereas potential...
Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N(2) fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N(2) fixation rates (6.5-48 micromol C(2)H(2) m(-2) h(-1)) were high, the vertical distribution of N(2) fixation peaking close to...
Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N(2) fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N(2) fixation rates (6.5-48 micromol C(2)H(2) m(-2) h(-1)) were high, the vertical distribution of N(2) fixation peaking close to...
Molecular methodologies were used to investigate free-living fungal communities associated with biological soil crusts (BSCs), along km-scale transects on the Colorado Plateau (USA). Two cyanobacteria-dominated crust types that did not contain significant lichen cover were examined. Fungal community diversity and composition were assessed with PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and sequencing, and fungi-specific quantitative PCR was used to measure fungal population densities as compared with those of bacteria. Our results clearly indicate that free-living fungi, while ubiquitous in BSCs, are less diverse and contribute far less biomass than their bacterial counterparts. Biological...
Soil-dominated ecosystems, with little or no plant cover (i.e. deserts, polar regions, high-elevation areas and zones of glacial retreat), are often described as 'barren', despite their potential to host photoautotrophic microbial communities. In high-elevation, subnival zone soil (i.e. elevations higher than the zone of continuous vegetation), the structure and function of these photoautotrophic microbial communities remains essentially unknown. We measured soil CO(2) flux at three sites (above 3600 m) and used molecular techniques to determine the composition and distribution of soil photoautotrophs in the Colorado Front Range. Soil CO(2) flux data from 2002 and 2007 indicate that light-driven CO(2) uptake occurred...
Second only to water among limiting factors, nitrogen controls the fertility of most arid regions. Where dry and wet depositions are weak, as in the western US deserts, N inputs rely heavily on biological N(2) fixation. Topsoil cyanobacterial communities known as biological soil crusts (BSCs) are major N(2) fixation hot spots in arid lands, but the fate of their fixed N remains controversial. Using a combination of microscale and mesoscale process rate determinations, we found that, in spite of theoretically optimal conditions, denitrification rates in BSCs were paradoxically immaterial for nitrogen cycling. Denitrifier populations within BSCs were extremely low. Because of this absence of denitrification, and because...