Judicious choice of candidate generating distributions improves efficiency of the MetropolisHastings algorithm. In Bayesian applications, it is sometimes possible to identify an approximation to the target posterior distribution; this approximate posterior distribution is a good choice for candidate generation. These observations are applied to analysis of the Cormack?Jolly?Seber model and its extensions.
We develop a spatial modeling framework for count data that is efficient to implement in highdimensional prediction problems. We consider spectral parameterizations for the spatially varying mean of a Poisson model. The spectral parameterization of the spatial process is very computationally efficient, enabling effective estimation and prediction in large problems using Markov chain Monte Carlo techniques. We apply this model to creating avian relative abundance maps from North American Breeding Bird Survey (BBS) data. Variation in the ability of observers to count birds is modeled as spatially independent noise, resulting in overdispersion relative to the Poisson assumption. This approach represents an improvement...
A general framework is developed for modelling rates of survival and recovery of marked animal populations in terms of auxiliary information collected at the time of marking. The framework may be used to estimate differences in survival or recovery among individual animals, groups of animals, and recovery times. Analyses of the recoveries of tagged fish and banded bird populations are used to illustrate the specification and selection of various models.
The National Contaminant Biomonitoring Program (NCBP) was initiated in 1967 as a component of the National Pesticide Monitoring program. It consists of periodic collection of freshwater fish and other samples and the analysis of the concentrations of persistent environmental contaminants in these samples. For the analysis, the common approach has been to apply the mixed twoway ANOVA model to combined data. A main disadvantage of this method is that it cannot give a detailed temporal trend of the concentrations since the data are grouped. In this paper, we present an alternative approach that performs a longitudinal analysis of the information using random effects models. In the new approach, no grouping is needed...
Misidentification of animals is potentially important when naturally existing features (natural tags) such as DNA fingerprints (genetic tags) are used to identify individual animals. For example, when misidentification leads to multiple identities being assigned to an animal, traditional estimators tend to overestimate population size. Accounting for misidentification in capturerecapture models requires detailed understanding of the mechanism. Using genetic tags as an example, we outline a framework for modeling the effect of misidentification in closed population studies when individual identification is based on natural tags that are consistent over time (nonevolving natural tags). We first assume a single sample...
Royle and Link (Ecology 86(9):25052512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logitnormal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated RoyleLink model yields...
Echelons provide an objective approach to prospecting for areas of potential concern in synoptic regional monitoring of a surface variable. Echelons can be regarded informally as stacked hill forms. The strategy is to identify regions of the surface which are elevated relative to surroundings (Relative ELEVATIONS or RELEVATIONS). These are areas which would continue to expand as islands with receding (virtual) floodwaters. Levels where islands would merge are critical elevations which delimit echelons in the vertical dimension. Families of echelons consist of surface sectors constituting separate islands for deeper waters that merge as water level declines. Pits which would hold water are disregarded in such a progression,...
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoreticallybased probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially...
Freshwater mussels appear to be promising candidates for adaptive cluster sampling because they are benthic macroinvertebrates that cluster spatially and are frequently found at low densities. We applied adaptive cluster sampling to estimate density of freshwater mussels at 24 sites along the Cacapon River, WV, where a preliminary timed search indicated that mussels were present at low density. Adaptive cluster sampling increased yield of individual mussels and detection of uncommon species; however, it did not improve precision of density estimates. Because finding uncommon species, collecting individuals of those species, and estimating their densities are important conservation activities, additional research...
Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent...
The assumption of demographic closure in the analysis of capturerecapture data under closedpopulation models is of fundamental importance. Yet, little progress has been made in the development of omnibus tests of the closure assumption. We present a closure test for timespecific data that, in principle, tests the null hypothesis of closedpopulation model M(t) against the openpopulation JollySeber model as a specific alternative. This test is chisquare, and can be decomposed into informative components that can be interpreted to determine the nature of closure violations. The test is most sensitive to permanent emigration and least sensitive to temporary emigration, and is of intermediate sensitivity to permanent...
Wildlife management is limited by uncontrolled and often unrecognized environmental variation, by limited capabilities to observe and control animal populations, and by a lack of understanding about the biological processes driving population dynamics. In this paper I describe a comprehensive framework for management that includes multiple models and likelihood values to account for structural uncertainty, along with stochastic factors to account for environmental variation, random sampling, and partial controllability. Adaptive optimization is developed in terms of the optimal control of incompletely understood populations, with the expected value of perfect information measuring the potential for improving control...
Geostatistics is a set of statistical techniques that is increasingly used to characterize spatial dependence in spatially referenced ecological data. A common feature of geostatistics is predicting values at unsampled locations from nearby samples using the kriging algorithm. Modeling spatial dependence in sampled data is necessary before kriging and is usually accomplished with the variogram and its traditional estimator. Other types of estimators, known as nonergodic estimators, have been used in ecological applications. Nonergodic estimators were originally suggested as a method of choice when sampled data are preferentially located and exhibit a skewed frequency distribution. Preferentially located samples...
The increasing availability of digital photographic materials has fueled efforts by agencies and organizations to generate land cover maps for states, regions, and the United States as a whole. Regardless of the information sources and classification methods used, land cover maps are subject to numerous sources of error. In order to understand the quality of the information contained in these maps, it is desirable to generate statistically valid estimates of accuracy rates describing misclassification errors. We explored a full sample survey framework for creating accuracy assessment study designs that balance statistical and operational considerations in relation to study objectives for a regional assessment of...
Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multiseason, multistate models as hidden Markov models to find both maximum likelihood estimates of model parameters and finitesample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric...
Habitat association models are commonly developed for individual animal species using generalized linear modeling methods such as logistic regression. We considered the issue of grouping species based on their habitat use so that management decisions can be based on sets of species rather than individual species. This research was motivated by a study of western landbirds in northern Idaho forests. The method we examined was to separately fit models to each species and to use a generalized Mahalanobis distance between coefficient vectors to create a distance matrix among species. Clustering methods were used to group species from the distance matrix, and multidimensional scaling methods were used to visualize the...
We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated sandpipers (Calidris pussila) for which we extend existing stopover models to allow for individuals to have different behaviour in terms of their stopover duration at the site. We demonstrate the use of reversible jump MCMC methods to derive posterior distributions for the model parameters and the models, simultaneously. The algorithm moves between models with different numbers of arrival groups as well as between models with different numbers of behavioural groups....
