Skip to main content
Advanced Search

Filters: Tags: Erosion (X) > partyWithName: U.S. Geological Survey (X)

299 results (18ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Switchgrass (Panicum virgatum L.), a highly productive perennial grass, has been recommended as one potential source for cellulosic biofuel feedstocks. Previous studies indicate that planting perennial grasses (e.g., switchgrass) in high topographic relief cropland waterway buffers can improve local environmental conditions and sustainability. The main advantages of this land management practice include (1) reducing soil erosion and improving water quality because switchgrass requires less tillage, fertilizers, and pesticides; and (2) improving regional ecosystem services (e.g., improving water infiltration, minimizing drought and flood impacts on production, and serving as carbon sinks). In this study, we mapped...
thumbnail
The Middle Fork Willamette River basin encompasses 3,548 square kilometers of western Oregon and drains to the mainstem Willamette River. Fall Creek basin encompasses 653 square kilometers and drains to the Middle Fork Willamette River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey evaluated geomorphic responses of downstream river corridors to annual drawdowns to streambed at Fall Creek Lake. This study of geomorphic change is focused on the major alluvial channel segments downstream of the U.S. Army Corps of Engineers’ dams on Fall Creek and the Middle Fork Willamette River, as well as the 736 hectare Fall Creek Lake. Reservoir erosion during streambed drawdown results in sediment...
thumbnail
The Middle Fork Willamette River basin encompasses 3,548 square kilometers of western Oregon and drains to the mainstem Willamette River. Fall Creek basin encompasses 653 square kilometers and drains to the Middle Fork Willamette River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey evaluated geomorphic responses of downstream river corridors to annual drawdowns to streambed at Fall Creek Lake. This study of geomorphic change is focused on the major alluvial channel segments downstream of the U.S. Army Corps of Engineers’ dams on Fall Creek and the Middle Fork Willamette River, as well as the 736 hectare Fall Creek Lake. Reservoir erosion during streambed drawdown results in sediment...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMGP, Coastal Erosion, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
These topographic/bathymetric digital elevation models (DEMs) were collected and compiled to characterize erosion and deposition in the Colorado River and in an adjacent zone of laterally recirculating flow (eddy) during both average flow conditions and during a controlled flood that occurred in March 2008. The objectives of the study were to measure changes sandbar morphology that occurred during changes in discharge associated with the controlled flood. These data were collected between February 6 and March 31, 2008 in a 1-mile study reach on the Colorado River within Grand Canyon National Park beginning 44.5 miles downstream from Lees Ferry, Arizona. These data were collected by the USGS Grand Canyon Monitoring...
Tags: Arizona, Colorado River, Eminence Break, Eminence Break field site, Glen Canyon Dam, All tags...
thumbnail
The U.S. Geological Survey (USGS) has compiled national shoreline data for more than 20 years to document coastal change and serve the needs of research, management, and the public. Maintaining a record of historical shoreline positions is an effective method to monitor national shoreline evolution over time, enabling scientists to identify areas most susceptible to erosion or accretion. These data can help coastal managers and planners understand which areas of the coast are vulnerable to change. This data release includes two new mean high water (MHW) shorelines extracted from lidar data collected in 2010 and 2017-2018. Previously published historical shorelines for South Carolina (Kratzmann and others, 2017)...
thumbnail
First Release: November 2018 The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge....
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This dataset contains projections for San Francisco County. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge. Methods...
thumbnail
This dataset contains projections for San Mateo County. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California covers the coastline from Pt. Conception to Golden Gate Bridge. Methods and...
thumbnail
This data contains geographic extents of projected coastal flooding, low-lying vulnerable areas, and maximum/minimum flood potential (flood uncertainty) associated with the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios...
thumbnail
This data contains maximum depth of flooding (cm) in the region landward of the present-day shoreline for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average...
thumbnail
This data contains maximum model-derived ocean currents (in meters per second) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This data contains maximum model-derived significant wave height (in meters) for the sea-level rise (SLR) and storm condition indicated. The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. Projections for CoSMoS v3.1 in Central California include flood-hazard information for the coast from Pt. Conception to the Golden Gate bridge. Outputs include SLR scenarios of 0.0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 meters; storm scenarios include background conditions (astronomic spring tide and average atmospheric conditions)...
thumbnail
This dataset contains projections from the Coastal Storm Modeling System (CoSMoS) for Santa Barbara County, north of Pt. Conception. CoSMoS makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. Data for Central California...


map background search result map search result map Switchgrass waterway buffers in the eastern Great Plains Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 CoSMoS v3.1 - Santa Barbara County CoSMoS v3.1 flood hazard projections: 100-year storm in San Luis Obispo County SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Cedar Island, VA, 2012–2013 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2010 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2010–2011 SupClas, GeoSet, SubType, VegDen, VegType: Categorical landcover rasters (landcover, geomorphic setting, substrate type, vegetation density, and vegetation type): Rockaway Peninsula, NY, 2012 CoSMoS v3.1 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 1-year storm in Santa Barbara County CoSMoS v3.1 - San Mateo County CoSMoS v3.1 - San Francisco County CoSMoS v3.1 ocean-currents hazards: average conditions in San Mateo County High-resolution digital elevation model of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 8, 2016 Point cloud of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 9, 2016 CoSMoS v3.1 flood depth and duration projections: average conditions in Santa Cruz County CoSMoS v3.1 ocean-currents hazards: average conditions in Monterey County Digital Elevation Models (DEM) Data Long-term and short-term shoreline change rates for the region of Buzzards Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Point cloud of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 9, 2016 High-resolution digital elevation model of Fall Creek Lake, Oregon, acquired during annual drawdown to streambed November 8, 2016 CoSMoS v3.1 - San Francisco County points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Edwin B. Forsythe NWR, NJ, 2010 Long-term and short-term shoreline change rates for the region of Buzzards Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 CoSMoS v3.1 ocean-currents hazards: average conditions in San Mateo County CoSMoS v3.1 - San Mateo County CoSMoS v3.1 - Santa Barbara County CoSMoS v3.1 ocean-currents hazards: 1-year storm in Santa Barbara County CoSMoS v3.1 wave-hazard projections: 1-year storm in Santa Barbara County CoSMoS v3.1 flood depth and duration projections: average conditions in Santa Cruz County CoSMoS v3.1 flood hazard projections: 100-year storm in San Luis Obispo County CoSMoS v3.1 ocean-currents hazards: average conditions in Monterey County Digital Elevation Models (DEM) Data Long-term shoreline change rate transects for the South Carolina coastal region, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Coastal Storm Modeling System (CoSMoS) for Central California, v3.1 Switchgrass waterway buffers in the eastern Great Plains