Skip to main content
Advanced Search

Filters: Tags: Evaporation (X) > Extensions: Citation (X)

8 results (11ms)   

View Results as: JSON ATOM CSV
Summary Consumptive use of water in a dispersed rural community has important implications for maximum housing density and its effects on sustainability of groundwater withdrawals. Recent rapid growth in Colorado, USA has stressed groundwater supplies in some areas, thereby increasing scrutiny of approximate methods developed there more than 30 years ago to estimate consumptive use that are still used today. A foothills residence was studied during a 2-year period to estimate direct and indirect water losses. Direct losses are those from evaporation inside the home, plus any outdoor use. Indirect loss is evapotranspiration (ET) from the residential leach-field in excess of ET from the immediately surrounding terrain....
Evapotranspiration determined using the energy-budget method at a semi-permanent prairie-pothole wetland in east-central North Dakota, USA was compared with 12 other commonly used methods. The Priestley-Taylor and deBruin-Keijman methods compared best with the energy-budget values; mean differences were less than 0.1 mm d−1, and standard deviations were less than 0.3 mm d−1. Both methods require measurement of air temperature, net radiation, and heat storage in the wetland water. The Penman, Jensen-Haise, and Brutsaert-Stricker methods provided the next-best values for evapotranspiration relative to the energy-budget method. The mass-transfer, deBruin, and Stephens-Stewart methods provided the worst comparisons;...
This study explores the influence of variable soil depths on simulated land?atmosphere exchanges from a currently operational land surface model over the North American Monsoon (NAM) region of southwestern North America. It is shown that the neglect of observed (actual) soil depths can limit land surface model performance at the sites studied. The main impact of accounting for shallower soil depths is to increase the dispersion, (i.e. the dynamic range) of sensible and latent heat fluxes when compared with simulations using a common fixed soil column depth of 2 meters. It is also shown that accounting for local soil depth variability can, moderately, improve land surface model flux estimation as compared with tower...
The atmospheric water balance over the upper Colorado River is evaluated twice daily for the seven winter seasons 1957?1963. The atmospheric water balance yields the exchange of water and water vapor at the earth-atmosphere interface through the observation of the spatial and time distributions and fluxes of water vapor in the atmosphere over the basin. The quantity precipitation minus evaporation is determined as a residual of the computation and is accumulated for daily and seasonal values. In addition, a natural period analysis is performed; the natural periods are delineated by homogeneity in the parameter precipitation minus evaporation. The dry periods are shown to exhibit a seasonal trend in evaporation rate...
Evapotranspiration determined using the energy-budget method at a semi-permanent prairie-pothole wetland in east-central North Dakota, USA was compared with 12 other commonly used methods. The Priestley-Taylor and deBruin-Keijman methods compared best with the energy-budget values; mean differences were less than 0.1 mm d−1, and standard deviations were less than 0.3 mm d−1. Both methods require measurement of air temperature, net radiation, and heat storage in the wetland water. The Penman, Jensen-Haise, and Brutsaert-Stricker methods provided the next-best values for evapotranspiration relative to the energy-budget method. The mass-transfer, deBruin, and Stephens-Stewart methods provided the worst comparisons;...
Abstract: Research was conducted to develop a method for obtaining floating pan evaporation rates in a small (less than 10,000 m2) wetland, lagoon, or pond. Floating pan and land pan evaporation data were collected from March 1 to August 31, 2005, at a small natural wetland located in the alluvium of the Canadian River near Norman, Oklahoma, at the U.S. Geological Survey Norman Landfill Toxic Substances Hydrology Research Site. Floating pan evaporation rates were compared with evaporation rates from a nearby standard Class A evaporation pan on land. Floating pan evaporation rates were significantly less than land pan evaporation rates for the entire period and on a monthly basis. Results indicated that the use of...
Summary An urban energy and water balance model is presented which uses a small number of commonly measured meteorological variables and information about the surface cover. Rates of evaporation-interception for a single layer with multiple surface types (paved, buildings, coniferous trees and/or shrubs, deciduous trees and/or shrubs, irrigated grass, non-irrigated grass and water) are calculated. Below each surface type, except water, there is a single soil layer. At each time step the moisture state of each surface is calculated. Horizontal water movements at the surface and in the soil are incorporated. Particular attention is given to the surface conductance used to model evaporation and its parameters. The...
Water availability defines and is the most frequent control on processes in arid and semiarid ecosystems. Despite widespread recognition of the importance of water in dry areas, knowledge about key processes in the water balance is surprisingly limited. How water is partitioned between evaporation and transpiration is an area about which ecosystem ecologists have almost no information. We used a daily time step soil water model and 39 years of data to describe the ecohydrology of a shortgrass steppe and investigate how manipulation of soil and vegetation variables influenced the partitioning of water loss between evaporation and transpiration. Our results emphasize the overwhelming importance of two environmental...