Skip to main content
Advanced Search

Filters: Tags: Flint River (X)

11 results (62ms)   

View Results as: JSON ATOM CSV
thumbnail
The Apalachicola-Chattahoochee-Flint River Basin (ACFB) was modeled to produce fourteen simulations of streamflow for demonstration of enhancements to the Precipitation Runoff Modeling System (PRMS); seven simulations without water use effects and seven simulations with water use effects. The seven simulations without water use were for 1) the whole ACFB basin (1982-2012), 2) the Chestatee River sub-basin (1982-2012), 3) the Chipola River sub-basin (1982-2012), 4) the Ichawaynochaway Creek sub-basin (1982-2012), 5) the Potato Creek sub-basin (1942-2012), 6) the Spring Creek sub-basin (1952-2012), and 7) the upper Chattahoochee River sub-basin (1982-2012). The seven simulations with water use effects were for the...
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...
thumbnail
The Apalachicola-Chattahoochee-Flint River Basin (ACFB) was modeled to produce fourteen simulations of streamflow with the Precipitation Runoff Modeling System (PRMS); seven simulations without water use effects and seven simulations with water use effects. The simulations were for 1) the whole ACFB basin (1982-2012), 2) the Chestatee River sub-basin (1982-2012), 3) the Chipola River sub-basin (1982-2012), 4) the Ichawaynochaway Creek sub-basin (1982-2012), 5) the Potato Creek sub-basin (1942-2012), 6) the Spring Creek sub-basin (1952-2012), and 7) the upper Chattahoochee River sub-basin (1982-2012). These data document the PRMS parameter files and input data files used in each of these simulations. Input files...
Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species-specific demographic rates. A more cost-effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta-demographic rates) of...
thumbnail
The stream segments available here are for seven applications of the Precipitation Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin (ACFB) by LaFontaine and others (2017). Geographic Information System (GIS) files for the stream segments in each of the seven model applications (whole ACFB, Chestatee River, Chipola River, Ichawaynochaway Creek, Potato Creek, Spring Creek, and Upper Chattahoochee River) are provided as shapefiles with attributes identifying the numbering convention used in the PRMS models of the ACFB.
thumbnail
The hydrologic response units (HRUs) available here are for seven applications of the Precipitation Runoff Modeling System (PRMS) in the Apalachicola-Chattahoochee-Flint River Basin (ACFB) by LaFontaine and others (2017). Geographic Information System (GIS) files for the HRUs in each of the seven model applications (whole ACFB, Chestatee River, Chipola River, Ichawaynochaway Creek, Potato Creek, Spring Creek, and Upper Chattahoochee River) are provided as shapefiles with attributes identifying the numbering convention used in the PRMS models of the ACFB.
thumbnail
A simple water budget includes precipitation, streamflow, change in storage, evapotranspiration, and residuals: P=Q + ET + ΔS + e. It is essential to include the managed component (i.e., the “human” component) to close the water budget and reduce the magnitude of the residuals from “natural” water budgets. Some of the largest components of managed water withdraws are public supply, irrigation, and thermoelectric. The modified water budget is: P=Q + ET + ΔS + (PS + Irr + TE) + e, where PS is public supply, Irr is irrigation, and TE is thermoelectric water use. This data release contains both the natural and managed components of the water budget for a region within the Apalachicola-Chattahoochee-Flint (ACF) River...


    map background search result map search result map Input Data for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Hydrologic Response Units Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Stream Segments Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget for 2010 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget for 2010 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Natural and managed components of the water-budget from 2008–2012 for 43 HUC10s in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, U.S. Input Data for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Output Data from Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. using the Precipitation Runoff Modeling System Hydrologic Response Units Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S. Stream Segments Used with the Precipitation Runoff Modeling System for Hydrologic Simulations of the Apalachicola-Chattahoochee-Flint River Basin in the southeastern U.S.