Skip to main content
Advanced Search

Filters: Tags: Flood inundation maps (X)

57 results (64ms)   

View Results as: JSON ATOM CSV
thumbnail
The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Greenbrier River within the community of Alderson, West Virginia. These geospatial data include the following items: 1. greenbrier_ald_bnd; shapefile containing the polygon showing the mapped area boundary for the Greenbrier River flood maps, 2. greenbrier_ald_hwm; shapefile containing high-water mark points, 3. polygon_greenbrier_ald_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water...
thumbnail
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment E - Lake Ontario...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment B - Lake Ontario...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment G - Lake Ontario...
thumbnail
Digital flood-inundation maps for coastal communities within Monmouth County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents...
thumbnail
Digital flood-inundation maps for coastal communities within Ocean County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents of...
thumbnail
Digital flood-inundation maps for coastal communities within Ocean County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents of...
thumbnail
These polygon boundaries, inundation extents, and depth rasters were created to provide an extent of flood inundation along the Lumber River within the community of Fair Bluff, North Carolina. The upstream and downstream reach extent is determined by the location of high-water marks, not extending the boundary far past the outermost high-water marks. In areas of uncertainty of flood extent, the model boundary is lined up with the flood inundation polygon extent. This boundary polygon was used to extract the final flood inundation polygon and depth layer from the flood water surface raster file. The passage of Hurricane Matthew through central and eastern North Carolina during October 7-9, 2016, brought heavy rainfall...
thumbnail
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment C - Lake Ontario...
thumbnail
Digital flood-inundation maps for coastal communities within Essex, Hudson, and Union Counties in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries....
These polygon boundaries, inundation extents, and depth rasters were created to provide an extent of flood inundation along the Lumber River within the community of Lumberton, North Carolina. The upstream and downstream reach extent is determined by the location of high-water marks, not extending the boundary far past the outermost high-water marks. In areas of uncertainty of flood extent, the model boundary is lined up with the flood inundation polygon extent. This boundary polygon was used to extract the final flood inundation polygon and depth layer from the flood water surface raster file. The passage of Hurricane Matthew through central and eastern North Carolina during October 7-9, 2016, brought heavy rainfall...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment H - Lake Ontario...
thumbnail
Digital flood-inundation maps for an approximately 295-mile length of the New Jersey coastline and tidewaters through 10-coastal counties stretching from Cumberland County through Bergen County; including Cumberland, Cape May, Atlantic, Ocean, Monmouth, Middlesex, Union, Essex, Hudson, and Bergen counties were created by the U.S Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP) and New Jersey Office of Emergency Management (NJOEM). The flood-inundation maps depict extent and depth estimates of coastal flooding corresponding to selected tidal elevations recorded by 25 real-time USGS tide gages located throughout the length of the study area coastline. The flood-inundation...
thumbnail
The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Meadow River and Sewell Creek within the community of Rainelle, West Virginia. These geospatial data include the following items: 1. meadow_sewell_bnd; shapefile containing the polygon showing the mapped area boundary for the Meadow River and Sewell Creek flood maps, 2. meadow_sewell_hwm; shapefile containing high-water mark points, 3. polygon_meadow_sewell_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation...
thumbnail
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment F - Lake Ontario...
thumbnail
Digital flood-inundation maps for coastal communities within Ocean County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents of...
thumbnail
Digital flood-inundation maps for coastal communities within Cumberland County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents...
thumbnail
Digital flood-inundation maps for coastal communities within Cape May County in New Jersey were created by water surfaces generated by an Advanced Circulation hydrodynamic (ADCIRC) and Simulating Waves Nearshore (SWAN) model from the Federal Emergency Management Agency (FEMA) Region II coastal analysis and mapping study (Federal Emergency Management Agency, 2014). Six synthetic modeled tropical storm events from a library of 159 events were selected based on parameters including landfall location or closest approach location, maximum wind speed, central pressure, and radii of winds. Two storm events were selected for the tide gage providing two "scenarios" and accompanying inundation-map libraries. The contents...
thumbnail
The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Gauley River within the community of Camden-on-Gauley, West Virginia. These geospatial data include the following items: 1. gauley_bnd; shapefile containing the polygon showing the mapped area boundary for the Gauley River flood maps, 2. gauley_hwm; shapefile containing high-water mark points, 3. polygon_gauley_hwm; shapefile containing mapped extent of flood inundation, derived from the water-surface elevation surveyed at high-water marks, 4. depth_hwm; raster file for the flood depths derived from the water-surface elevation surveyed at high-water marks, 5. polygon_gauley_dem;...
Static flood inundation boundary extents were created along the entire shoreline of Lake Ontario in Cayuga, Jefferson, Monroe, Niagara, Orleans, Oswego, and Wayne Counties in New York by using recently acquired (2007, 2010, 2014, and 2017) light detection and ranging (lidar) data. The flood inundation maps, accessible through the USGS Flood Inundation Mapping Program website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and water depth of shoreline flooding in 8 segments corresponding to adjacent water-surface elevations (stages) at 8 USGS lake gages on Lake Ontario. This item includes data sets for segment D - Lake Ontario...


map background search result map search result map Lumber River at Fair Bluff, North Carolina Flood Map Files from October 2016 Gauley River in Camden-on-Gauley, West Virginia, Flood Map Files from June 2016 Greenbrier River at Alderson, West Virginia, Flood Map Files from June 2016 Meadow River and Sewell Creek in Rainelle, West Virginia, Flood Map Files from June 2016 Segment B - Flood inundation map geospatial datasets for Lake Ontario, New York Segment D - Flood inundation map geospatial datasets for Lake Ontario, New York Segment G - Flood inundation map geospatial datasets for Lake Ontario, New York Segment H - Flood inundation map geospatial datasets for Lake Ontario, New York Segment C - Flood inundation map geospatial datasets for Lake Ontario, New York Segment E - Flood inundation map geospatial datasets for Lake Ontario, New York Segment F - Flood inundation map geospatial datasets for Lake Ontario, New York Synthetic storm-driven flood-inundation grids for coastal communities in 10 New Jersey counties Synthetic storm-driven flood-inundation grids for coastal communities along the Hudson and Hackensack Rivers and adjacent to the Newark tide gage from North Bergen Township to Linden, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Raritan Bay and adjacent to the Keansburg tide gage from Aberdeen Township to Middletown Township, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Barnegat Bay and adjacent to the Mantoloking tide gage from Point Pleasant Beach to Toms River Township, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Delaware Bay and adjacent to the Greenwich tide gage from Lawrence Township to Stow Creek Township, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Barnegat Bay and adjacent to the Barnegat Light tide gage from Lanoka Harbor to Harvey Cedars, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Barnegat Bay and adjacent to the Tuckerton tide gage from Beach Haven to Little Egg Harbor Township, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Delaware Bay and adjacent to the South Dennis tide gage from North Cape May to Delmont, NJ Gauley River in Camden-on-Gauley, West Virginia, Flood Map Files from June 2016 Lumber River at Fair Bluff, North Carolina Flood Map Files from October 2016 Meadow River and Sewell Creek in Rainelle, West Virginia, Flood Map Files from June 2016 Synthetic storm-driven flood-inundation grids for coastal communities along the Barnegat Bay and adjacent to the Barnegat Light tide gage from Lanoka Harbor to Harvey Cedars, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Raritan Bay and adjacent to the Keansburg tide gage from Aberdeen Township to Middletown Township, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Barnegat Bay and adjacent to the Mantoloking tide gage from Point Pleasant Beach to Toms River Township, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Barnegat Bay and adjacent to the Tuckerton tide gage from Beach Haven to Little Egg Harbor Township, NJ Segment E - Flood inundation map geospatial datasets for Lake Ontario, New York Synthetic storm-driven flood-inundation grids for coastal communities along the Delaware Bay and adjacent to the Greenwich tide gage from Lawrence Township to Stow Creek Township, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Hudson and Hackensack Rivers and adjacent to the Newark tide gage from North Bergen Township to Linden, NJ Synthetic storm-driven flood-inundation grids for coastal communities along the Delaware Bay and adjacent to the South Dennis tide gage from North Cape May to Delmont, NJ Segment D - Flood inundation map geospatial datasets for Lake Ontario, New York Segment C - Flood inundation map geospatial datasets for Lake Ontario, New York Segment B - Flood inundation map geospatial datasets for Lake Ontario, New York Segment G - Flood inundation map geospatial datasets for Lake Ontario, New York Segment F - Flood inundation map geospatial datasets for Lake Ontario, New York Segment H - Flood inundation map geospatial datasets for Lake Ontario, New York Synthetic storm-driven flood-inundation grids for coastal communities in 10 New Jersey counties