Skip to main content
Advanced Search

Filters: Tags: Flooding (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

69 results (14ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
These data represent total vegetation and surface water along approximately 12 kilometers of the Paria River upstream from the confluence of the Colorado River at Lees Ferry, Arizona. They are derived from airborne, multispectral imagery obtained in late May 2009, 2013, and 2021, collected with a push-broom sensor with 4 spectral bands depicting Blue, Green, Red and Near-Infrared wavelengths at a spatial resolution of 20 centimeters. The vegetation classification data were created using a supervised classification algorithm provided by Harris Geospatial in ENVI version 5.6.3 (Exelis Visual Information Solutions, Boulder, Colorado). The water data were created using a Green Normalized Difference Vegetation Index...
Tags: Arizona, Botany, Cloud Optimized GeoTIFF data, Colorado River, Ecology, All tags...
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) shapefiles based on wave-driven total water levels for Commonwealth of Puerto Rico. There are eight associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years), the pre-storm scenario (base) and the post-storm scenarios.
thumbnail
Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, a bottom-mounted frame equipped with a Nortek 1MHz Aquadopp, Solinst Levelogger, and HOBO temperature loggers measured currents, water levels, and water temperatures. Ground temperatures (maximum depth 3 meters...
thumbnail
Time-series measurements of waves, currents, water levels, sea surface temperatures, ocean salinity, and water, air, and ground temperatures were collected in July through September 2011 in and around Arey Lagoon, near Barter Island, Alaska. Directional wave spectra, currents, water levels, salinity, and bottom and surface water temperatures were measured with a bottom-mounted 1MHz Nortek AWAC, HOBO temperature loggers, and a Solinst Levelogger in ~5m water depth offshore of Arey Island. Within Arey Lagoon, a bottom-mounted frame equipped with a Nortek 1MHz Aquadopp, Solinst Levelogger, and HOBO temperature loggers measured currents, water levels, and water temperatures. Ground temperatures (maximum depth 3 meters...
thumbnail
The data herein are geochemical (from X-Ray fluorescence spectrometry), grain size (percent clay, silt, sand), lithological (loss on ignition data), bathymetric, reconstructed IVT, and radioactive isotopes (14-C, 210-Pb, 226-Ra, and 137-Cs). These data were collected from sediments from Leonard Lake, Mendocino County, California, USA starting in 2014. Together, these data provide evidence for a record of extreme precipitation going back three millennia, showing regional pluvial and drought cycles.
thumbnail
This point shapefile represents 38 terrestrial laser scanner (TLS) survey scan locations collected by single-base real-time kinematic (RTK) global navigation satellite system (GNSS) surveys in Grapevine Canyon near Scotty's Castle, Death Valley National Park, from July 12-14, 2016. Data were collected by two Topcon GR-3 GNSS receivers at one-second intervals for three minutes for each location.
thumbnail
This polygon shapefile represents estimated flood-inundation areas in Grapevine Canyon near Scotty's Castle, Death Valley National Park. Estimates of the 4, 2, 1, 0.5, and 0.2 percent annual exceedance probability (AEP) flood streamflows (previously known as the 25, 50, 100, 250, and 500-year floods) were computed from regional flood regression equations. The estimated flood streamflows were used with one-dimensional hydraulic models to compute water surface elevations that were mapped on a digital terrain model of the study area. Those locations where the water surface was higher than the land surface were defined as inundated. The inundation polygons are named by AEP flow (4, 2, 1, 0.5, 0.2-percent) and geometry...
thumbnail
This dataset contains topographic (horizontal and vertical) data for 20 sites, surveyed November 6 to November 28, 2017 as part of documentation of flooding that occurred in Puerto Rico during and after Hurricane Maria (September to November 2017). Hurricane Maria hit the Island of Puerto Rico on September 20, 2017 and was one of the deadliest storms in U.S. history. USGS personnel conducted topographic surveys at selected stream sites to facilitate hydraulic modeling of peak streamflows (or discharges) – termed indirect measurements – using published standard USGS methods. Indirect (post-flood) measurements are used to characterize flood peaks that could not be determined using direct methods (for example current-velocity...
thumbnail
This data release comprises the raster data files and code necessary to perform all analyses presented in the associated publication. The 16 TIF raster data files are classified surface water maps created using the Dynamic Surface Water Extent (DSWE) model implemented in Google Earth Engine using published technical documents. The 16 tiles cover the country of Cambodia, a flood-prone country in Southeast Asia lacking a comprehensive stream gauging network. Each file includes 372 bands. Bands represent surface water for each month from 1988 to 2018, and are stacked from oldest (Band 1 - January 1988) to newest (Band 372 - December 2018). DSWE classifies pixels unobscured by cloud, cloud shadow, or snow into five...
thumbnail
Data to support carbon (C) budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. This work represents the first estimates of C standing stocks, C mass balance, soil C burial, and lateral C export to aquatic environments in tidal freshwater forested wetlands undergoing transition to oligohaline marsh. First release: 2018 Revised: May 2019 (ver. 2.0)
thumbnail
We characterized coastal wetland responses to flooding stress by measuring vegetation cover, wetland elevation and water elevation in healthy and degrading wetlands dominated by Spartina patens. Wetland elevation was measured using real-time kinematic survey methods. Vegetation cover was determined by visual estimation methods, and water elevation was measured using in situ continuous recorders. In addition to these local-scale responses, we also measured landscape-scale patterns of land and water aggregation or fragmentation using remotely sensed data (Jones et al., 2018). Associated products: Jones, W.R., Hartley, S.B., Stagg, C.L., and Osland, M.J. 2018. Land-water classification for selected sites in McFaddin...
thumbnail
USGS researchers with the Patterns in the Landscape – Analyses of Cause and Effect (PLACE) project are releasing a collection of high-frequency surface water map composites derived from daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Using Google Earth Engine, the team developed customized image processing steps and adapted the Dynamic Surface Water Extent (DSWE) to generate surface water map composites in California for 2003-2019 at a 250-m pixel resolution. Daily maps were merged to create 6, 3, 2, and 1 composite(s) per month corresponding to approximately 5-day, 10-day, 15-day, and monthly products, respectively. The resulting maps are available as downloadable files for each year. Each...
This data release provides flooding extent polygons and flood depth rasters (geotiffs) based on sea-level rise and wave-driven total water levels for the coast of the most populated Hawaiian, Mariana, and American Samoan Islands. Oceanographic, coastal engineering, ecologic, and geospatial data and tools were combined to evaluate the increased risks of storm-induced coastal flooding due to climate change and sea-level rise. We followed risk-based valuation approaches to map flooding due to waves and storm surge at 10 square meter resolution along these islands’ coastlines for annual (1-year), 20-year, and 100-year return-interval storm events and +0.25 m, +0.50 m, +1.00 m, +1.50 m, +2.00 m, and +3.00 m sea-level...
Categories: Data; Tags: CMHRP, Climate Change, Climatology, Coastal Processes, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
Projected wave climate trends from WAVEWATCH3 model output were used as input for nearshore wave models (for example, SWAN) for the main Hawaiian Islands to derive data and statistical measures (mean and top 5 percent values) of wave height, wave period, and wave direction for the recent past (1996-2005) and future projections (2026-2045 and 2085-2100). Three-hourly global climate model (GCM) wind speed and wind direction output from four different GCMs provided by the Coupled Model Inter-Comparison Project, phase 5 (CMIP5), were used as boundary conditions to the physics-based WAVEWATCH3 numerical wave model for the area encompassing the main Hawaiian islands. Two climate change scenarios for each of the four GCMs...
thumbnail
This data release provides flooding extent polygons (flood masks) and depth values (flood points) based on wave-driven total water levels for 22 locations within the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands. For each of the 22 locations there are eight associated flood mask polygons and flood depth point files: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. These flood masks can be combined with economic, ecological, and engineering tools to provide a rigorous financial valuation...
Tags: American Samoa, CMHRP, CNMI, Cayo Vieques, Coastal and Marine Hazards and Resources Program, All tags...
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques). For each island there are 8 associated flood mask and flood depth shapefiles: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.
thumbnail
This U.S. Geological Survey data release provides data on spatial variations in tidal datums, tidal range, and nuisance flooding in Chesapeake Bay and Delaware Bay. Tidal datums are standard elevations that are defined based on average tidal water levels. Datums are used as references to measure local water levels and to delineate regions in coastal environments. Nuisance flooding refers to the sporadic inundation of low-lying coastal areas by the maximum tidal water levels during spring tides, especially perigean spring tides (also known as king tides). Nuisance flooding is independent of storm event flooding, and it represents a cumulative or chronic hazard. The data were obtained by following a consistent methodology...
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) shapefiles based on wave-driven total water levels for the State Florida (the Florida Peninsula and the Florida Keys). There are 16 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years), the current scenario (base) and each of the restoration scenarios (structural_25, structural_05, and ecological_25).
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian). For each island there are 8 associated flood mask and flood depth shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs.
thumbnail
This part of the data release presents projected flooding extent polygon (flood masks) and flooding depth points (flood points) shapefiles based on wave-driven total water levels for the Territory of the U.S. Virgin Islands (the islands of Saint Croix, Saint John, and Saint Thomas). For each island there are 8 associated flood mask and flood depth shapefiles: one for each four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years) and both with (wrf) and without (worf) the presence of coral reefs. Flooding depth point data are also presented as a comma-separated value (.csv) text file.


map background search result map search result map Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands Carbon budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. (2005-2016) Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of the U.S. Virgin Islands (the islands of Saint Croix, Saint John, and Saint Thomas) Local and landscape-scale data describing patterns of coastal wetland loss in the Texas Chenier Plain, U.S.A., 2017-2018 Flood-Inundation Areas in Grapevine Canyon Near Scotty's Castle, Death Valley National Park, California Scan Origins for a Terrestrial Laser Scanner Survey in Grapevine Canyon Near Scotty's Castle, Death Valley National Park, California Implementation of a Surface Water Extent Model using Cloud-Based Remote Sensing - Code and Maps Conductivity, temperature and depth time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Ground temperature time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska DSWEmod surface water map composites generated from daily MODIS images - California Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods for the Commonwealth of Puerto Rico before and after Hurricanes Irma and Maria due to the storms' damage to the coral reefs Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods for the State of Florida for current and potentially restored coral reefs Spatial and elevation points surveyed for indirect measurements of peak streamflow associated with flooding of September to November 2017 in Puerto Rico Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay Vegetation and water classifications for a segment of the Paria River upstream of the Colorado River Confluence, Arizona, USA Geochemical, grain size, lithological, bathymetric, reconstructed integrated vapor transport, and age model data for Leonard Lake, Mendocino County Flood-Inundation Areas in Grapevine Canyon Near Scotty's Castle, Death Valley National Park, California Scan Origins for a Terrestrial Laser Scanner Survey in Grapevine Canyon Near Scotty's Castle, Death Valley National Park, California Vegetation and water classifications for a segment of the Paria River upstream of the Colorado River Confluence, Arizona, USA Conductivity, temperature and depth time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Ground temperature time-series data collected in 2011 in the vicinity of Arey Lagoon and Barter Island, Alaska Local and landscape-scale data describing patterns of coastal wetland loss in the Texas Chenier Plain, U.S.A., 2017-2018 Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Commonwealth of the Northern Mariana Islands (the islands of Saipan and Tinian) Projected flood extent polygons and flood depth points based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the Territory of Puerto Rico (the islands of Culebra, Puerto Rico, and Vieques) Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods for the Commonwealth of Puerto Rico before and after Hurricanes Irma and Maria due to the storms' damage to the coral reefs Spatial and elevation points surveyed for indirect measurements of peak streamflow associated with flooding of September to November 2017 in Puerto Rico Carbon budget assessment of tidal freshwater forested wetland and oligohaline marsh ecosystems along the Waccamaw and Savannah rivers, U.S.A. (2005-2016) Geochemical, grain size, lithological, bathymetric, reconstructed integrated vapor transport, and age model data for Leonard Lake, Mendocino County Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods for the State of Florida for current and potentially restored coral reefs Tidal Datums, Tidal Range, and Nuisance Flooding Levels for Chesapeake Bay and Delaware Bay Implementation of a Surface Water Extent Model using Cloud-Based Remote Sensing - Code and Maps Dynamically downscaled future wave projections from SWAN model results for the main Hawaiian Islands DSWEmod surface water map composites generated from daily MODIS images - California Projected flooding extents and depths based on 10-, 50-, 100-, and 500-year wave-energy return periods, with and without coral reefs, for the States of Hawaii and Florida, the Territories of Guam, American Samoa, Puerto Rico, and the U.S. Virgin Islands, and the Commonwealth of the Northern Mariana Islands