Skip to main content
Advanced Search

Filters: Tags: Floodplain (X) > Categories: Data (X)

111 results (69ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This project will provide a comprehensive synthesis of beaver recolonization science and techniques for successful reintroduction or population expansion through a thorough, in-depth, coordinated review of all North American beaver-related information, including identification of research gaps and data needs, and recommendations for project implementation. This information will be disseminated through a series of one-day workshops.
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2013, AK-1, Alaska, Alaska, Alaska, All tags...
thumbnail
In large river ecosystems, the timing, extent, duration and frequency of floodplain inundation greatly affect the quality of fish and wildlife habitat and the supply of important ecosystem goods and services. Seasonal high flows provide connectivity from the river to the floodplain, and seasonal inundation of the floodplain governs ecosystem structure and function. River regulation and other forms of hydrologic alteration have altered the connectivity of many rivers with their adjacent floodplain – impacting the function of wetlands on the floodplain and in turn, impacting the mainstem river function. Conservation and management of remaining floodplain resources can be improved through a better understanding of...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Soil samples were collected from Lady Bird Johnson Lake, Austin, Texas in 2019 to generate seed bank data for the rare plant Physostegia correllii. Seed germination data was produced from the soil samples kept in a greenhouse at the Wetland and Aquatic Research Center in Lafayette, LA.
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
Aerial imagery for the Upper Mississippi River System (UMRS) Navigational Pool 5 drawdown follow-up was collected in true color (TC) in August of 2015 at 6”/pixel using a mapping-grade Applanix DSS 439 digital aerial camera. All TC aerial images were orthorectified, mosaicked, and compressed into a JPEG2000-format image. The TC aerial images were interpreted and automated using a genus-level 150-class Long Term Resource Monitoring (LTRM) vegetation classification. The 2015 vegetation database was prepared by or under the supervision of competent and trained professional staff using documented standard operated procedures.
thumbnail
The floodplain maps utilized by HUD were digitized by PIC technologies when publishing the Pinedale Anticline Record of Decision. This area only covers the Pinedale Anticline.
thumbnail
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
The shapefiles depict the valley bottom areas over which HEC-RAS model results were summarized. Valley bottoms were manually delineated in ArcMap by visually interpreting LIDAR terrain models and aerial imagery. Substantial changes in elevation, curvature, and slope were interpreted within the context of their position within the study reach to be channel banks and valley walls. Such areas were excluded from the valley bottom delineation.
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
thumbnail
This project will provide a comprehensive synthesis of beaver recolonization science and techniques for successful reintroduction or population expansion through a thorough, in-depth, coordinated review of all North American beaver-related information, including identification of research gaps and data needs, and recommendations for project implementation. This information will be disseminated through a series of one-day workshops.
thumbnail
Map of the alluvial valley of the Mississippi River from the head of St. Francis Basin to the Gulf of Mexico, showing lands subject to overflow, location of levees and trans-alluvial profiles Downloaded from: https://www.digitalcommonwealth.org/search/commonwealth:7h14b0450 Edited (to correct position of panels) and georeferenced by Yvonne Allen (USFWS) to geographic NAD1927 using ArcGIS , 3rd order polynomial and 80 ground control points using lat lon grid only. RMS=0.00408 SERVICE DEFINITION FILE ONLY For Geographic NAD 27 geotiff see: https://www.sciencebase.gov/catalog/item/58f66491e4b0bd52222f7821
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
thumbnail
Digital flood-inundation maps for a 7.5-mile reach of the White River at Noblesville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the White River at Noblesville, Ind., streamgage (USGS station number 03349000). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service...


map background search result map search result map Floodplains for the BLM Pinedale Field Office, Wyoming at 1:100,000 Using Beaver for Climate Change and Conservation Benefits UMRS LTRMP 2010/11 LCU Mapping -- Illinois River Marseillies Reach UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 09 UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 13 UMRS LTRMP 2010/11 LCU Mapping -- Illinois River Starved Rock Reach UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 26 GCPO Inundation Frequency Mosaic (2017) 2015 Pool 5 Drawdown Land Cover/Land Use Data Lower Mississippi River Circa 1899 Shapefile of the flood-inundation maps for the White River at Noblesville, Indiana Final Report Using Beaver for Climate Change and Conservation Benefits UMRS Floodplain Inundation Attributes - Pool 9 UMRS Floodplain Inundation Attributes - Pool 11 UMRS Floodplain Inundation Attributes - Pool 22 UMRS Floodplain Inundation Attributes - Pool 25 UMRS Floodplain Inundation Attributes - Pool 26 Seneca Shapefiles depicting the valley bottom areas UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 16 Data Release: Seed banks of rare Physostegia correllii in Lady Bird Johnson Lake, Austin, Texas Data Release: Seed banks of rare Physostegia correllii in Lady Bird Johnson Lake, Austin, Texas Seneca Shapefiles depicting the valley bottom areas Shapefile of the flood-inundation maps for the White River at Noblesville, Indiana UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 16 UMRS LTRMP 2010/11 LCU Mapping -- Illinois River Marseillies Reach UMRS Floodplain Inundation Attributes - Pool 9 Floodplains for the BLM Pinedale Field Office, Wyoming at 1:100,000 UMRS Floodplain Inundation Attributes - Pool 22 UMRS Floodplain Inundation Attributes - Pool 11 UMRS Floodplain Inundation Attributes - Pool 25 UMRS Floodplain Inundation Attributes - Pool 26 UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 13 UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 26 Final Report Using Beaver for Climate Change and Conservation Benefits Using Beaver for Climate Change and Conservation Benefits Lower Mississippi River Circa 1899 GCPO Inundation Frequency Mosaic (2017)