Skip to main content
Advanced Search

Filters: Tags: Fresh water (X) > Types: Citation (X)

6 results (160ms)   

View Results as: JSON ATOM CSV
Water introduced to surface drainages, such as agricultural and roadway runoff, mine drainage, or coalbed natural gas (CBNG)-produced water, potentially can be of environmental concern. In order to mitigate potential environmental effects, it may be important to be able to trace water discharged to the surface as it infiltrates and interacts with near-surface aquifers. We have chosen to study water withdrawn during CBNG production for isotope tracing in the hyporheic zone because it poses a variety of economic, environmental, and policy issues in the Rocky Mountain states. Ground water quality must be protected as CBNG water is added to semiarid ecosystems. Strontium (Sr) isotopes are effective fingerprints of the...
Larval flannelmouth sucker (Catostomus latipinnis) were exposed to arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc singly, and to five mixtures of five to nine inorganics. The exposures were conducted in reconstituted water representative of the San Juan River near Shiprock, New Mexico. The mixtures simulated environmental ratios reported for sites along the San Juan River (San Juan River backwater, Fruitland marsh, Hogback East Drain, Mancos River, and McElmo Creek). The rank order of the individual inorganics, from most to least toxic, was: copper > zinc > vanadium > selenite > selenate > arsenate > uranium > boron > molybdenum. All five mixtures exhibited additive toxicity...
Knowledge of key sources and biogeochemical processes that affect the transport of nitrate (NO(3)(-)) in streams can inform watershed management strategies for controlling downstream eutrophication. We applied dual isotope analysis of NO(3)(-) to determine the dominant sources and processes that affect NO(3)(-) concentrations in six stream/river watersheds of different land uses. Samples were collected monthly at a range of flow conditions for 15 mo during 2004-05 and analyzed for NO(3)(-) concentrations, delta(15)N(NO3), and delta(18)O(NO3). Samples from two forested watersheds indicated that NO(3)(-) derived from nitrification was dominant at baseflow. A watershed dominated by suburban land use had three delta(18)O(NO3)...
The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms...
Freshwater mussels (unionids) are increasingly recognized as important providers of ecosystem services, yet are among the most endangered fauna in the world. Because unionids are generally sessile and require specific fish hosts for development and dispersal, they are particularly vulnerable to habitat degradation. Surprisingly, little is known about the distribution of genetic diversity in freshwater mussels and this gap has a negative impact on taxonomy, monitoring, conservation and ecological research in these species. Here, we focus on western North American Anodonta, one of only three genera known to exist in this broad landscape and which contains three highly divergent lineages. We describe phylogeographical...
Conservation biologists often face the trade-off that increasing connectivity in fragmented landscapes to reduce extinction risk of native species can foster invasion by non-native species that enter via the corridors created, which can then increase extinction risk. This dilemma is acute for stream fishes, especially native salmonids, because their populations are frequently relegated to fragments of headwater habitat threatened by invasion from downstream by 3 cosmopolitan non-native salmonids. Managers often block these upstream invasions with movement barriers, but isolation of native salmonids in small headwater streams can increase the threat of local extinction. We propose a conceptual framework to address...