Skip to main content
Advanced Search

Filters: Tags: GEOGRAPHIC INFORMATION SYSTEMS (X) > partyWithName: U.S. Fish and Wildlife Service (X)

15 results (9ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
LCC funding allowed completion of this BLM initiative to develop a North Slope-wide cover type map and create a crosswalk that integrates all component cover type maps that comprise the larger overall North Slope cover type map.This map is the outcome of a multi-year project to produce a moderate resolution landcover base map for the North Slope of Alaska to serve as a primary base layer for long-term science and planning activities on the North Slope. New Landsat Thematic Mapper (TM) 30 meter resolution landcover maps were produced for the far western arctic, and for the area between the National Petroleum Reserve - Alaska (NPRA) and Arctic National Wildlife Refuge. In the NPRA, an existing land cover map from...
thumbnail
Information on the nature and distribution of permafrost is critical to assessing the response of Arctic ecosystems to climate change, because thawing permafrost under a warming climate will cause thaw settlement and affect micro-topography, surface water redistribution and groundwater movement, soil carbon balance, trace gas emissions, vegetation changes, and habitat use. While a small-scale regional permafrost map is available, as well as information from numerous site-specific large-scale mapping projects, landscape-level mapping of permafrost characteristics is needed for regional modeling and climate impact assessments. The project addresses this need by: (1) compiling existing soil/permafrost data from available...
thumbnail
This project used existing ShoreZone coastal imagery to map 719 km of shoreline in Bristol Bay, from Cape Constantine to Cape Newenham. This section of coastline is an extremely important herring spawning area and an important component of the Bristol Bay fisheries. Intertidal and nearshore vegetation, on which herring spawn, was catalogued as part of the mapping and, along with shore types, coastal substrate, and coastal biota, added to the state-wide ShoreZone dataset.​
Categories: Data; Tags: COASTAL HABITAT, COASTAL HABITAT, COASTAL LANDFORMS, COASTAL LANDFORMS, DATA DELIVERY, All tags...
thumbnail
The most comprehensive historical aerial imagery of Alaska available to the public was collected as partof the Alaska High-Altitude Aerial Photography Program (AHAP) during 1978-1986. Recent studiesexamining coastline erosion have clearly demonstrated that the AHAP photographs are a valuablebaseline for detecting and quantifying change that occurred in Alaska in recent decades. Unfortunately,these data have been greatly underutilized due to challenges associated with orthorectifying the rawimagery and making it ready for users of Geographic Information Systems (GIS). By partnering with theAlaska Satellite Facility (ASF) at the University of Alaska Fairbanks the ALCC has made high-qualityAHAP orthomosaics of the...
This project used existing ShoreZone coastal imagery to map 719 km of shoreline in Bristol Bay, from Cape Constantine to Cape Newenham. This section of coastline is an extremely important herring spawning area and an important component of the Bristol Bay fisheries. Intertidal and nearshore vegetation, on which herring spawn, was catalogued as part of the mapping and, along with shore types, coastal substrate, and coastal biota, added to the state-wide ShoreZone dataset.​
Categories: Data; Tags: COASTAL HABITAT, COASTAL HABITAT, COASTAL LANDFORMS, COASTAL LANDFORMS, DATA DELIVERY, All tags...
thumbnail
The Arctic LCC and National Park Service has partnered together to complete a ShoreZone imagining and mapping project for the entire coastline, lagoons inclusive, from Point Hope to Wales in Northwestern Alaska. The ShoreZone Mapping System uses oblique aerial imagery and field data from ShoreStations to classify coastline habitats based on geological and biological attributes. ShoreZone products are made available to the public through the National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Website.
thumbnail
The Arctic LCC created the Threatened Eider Geodatabase to serve as a repository for threatened eider distribution information. This database is intended to be a qualitative “first look” at where these two species of eider have been recorded and where surveys have been conducted. This dataset is intended for general planning and mapping purposes, it should NOT be used for deriving density estimates. Users are reminded that these data do not represent all locations within the geographic scope of this database that may be occupied by threatened eiders..
thumbnail
This project used historical climate records for Alaska and Western Canada to identify patterns in temperature and precipitation reflecting the distribution of biomes seen across this region today. These climate-biome models used downscaled climate data to help identify areas which were most vulnerable to change, and areas of “refugia” where the temperature and precipitation conditions will be most similar to what they are today. The results may help managers, landscape planners, conservationists and others; understand how dramatically the temperature and precipitation patterns are expected to change.
thumbnail
Shorebirds are among the most abundant and visible high-latitude vertebrates. Their ecology makes them particularly sensitive to climate change in the arctic. The current distribution of shorebirds on the Arctic Coastal Plain is poorly known because accurate data exist from just a few locations. The Arctic LCC has supported development of habitat selection models that combine bird survey data with remotely-sensed habitat maps to “fill in the gaps” where observations are sparse. In future phases, the distribution maps generated from these models could be ground-truthed and improved, and subsequently used as the basis from which to forecast future shorebird distribution for projected future climate scenarios.
thumbnail
Water availability, distribution, quality and quantity are critical habitat elements for fish and other water-dependent species. Furthermore, the availability of water is also a pre-requisite for a number of human activities. The density of weather and hydrology observation sites on the North Slope is orders of magnitude less than in other parts of the U.S., making it difficult to document hydrologic trends and develop accurate predictive models where water is a key input. The information that does exist is scattered among many entities, and varies in format. This multi-year data rescue effort project brought together scarce and scattered hydrology data sets, including high-priority datasets held by the Bureau of...
thumbnail
Federal land managers, non-governmental organizations, and industry have been developing ecological land classifications at regional and landscape-level for Alaska to aid in ecosystem management. An ecoregion map that covers the entire state was produced by Nowacki et al. (2002). At the landscape level, ecological subsection mapping has been done for all National Park Service (NPS) and Forest Service lands in Alaska. In northern Alaska, a portion of the North Slope has been mapped at the ecological subsection level by industry (Jorgenson et al. 2003). In the Brooks Range, similar mapping has been done for National Parks and Preserves at Cape Krusenstern (Swanson 2001), Noatak (Jorgenson et al. 2002), and Gates of...
thumbnail
We used the United States National Grid to develop a sampling grid for monitoring programs in the Great Plains Landscape Conservation Cooperative, delineated by Bird Conservation Regions 18 and 19. Landscape Conservation Cooperatives are science based partnerships with the goal to inform and guide conservation at regional landscape levels. Developing a standardized sampling grid for a LCC is a new endeavor and is designed to reduce program costs, avoid repetition in sampling, and increase efficiency in monitoring programs. This is possible because the grid’s nationwide coverage, uniform starting point, and scalability allow researchers to expand their monitoring programs from a small, local level to a regional or...
thumbnail
Over the last 3 years, high-resolution LiDAR elevation data has been acquired for much of the northern coast of Alaska in support of the USGS Coastal and Marine Geology Program’s National Assessment of Shoreline Change project. Because of funding limitations, LiDAR data were not collected over most river deltas and embayments. Subsequent discussions with scientists and managers from both public agencies and private organizations indicated a need and desire to fill the gaps in the coastal elevation data set, specifically over the low-lying deltas and estuaries that provide important habitat for migratory birds and other wildlife. The Arctic LCC provided support to help cover costs associated with acquiring and processing...


    map background search result map search result map Integrated monitoring within BCR’s: Creating a wildlife monitoring grid for the GPLCC Understanding Arctic Ecosystems: Ecological Mapping and Mapping Field Plot Database for the North Slope Threatened Eider Geodatabase for Northern Alaska Hydroclimatological Data Rescue, Data Inventory, Network Analysis, and Data Distribution Permafrost Database Development, Characterization, and Mapping for Northern Alaska WEAR ShoreZone and ShoreStation Surveys NPS Historical Orthomosaic, Digital Surface Model, and Shoreline Position for the Northern Alaska Coastline North Slope Alaska Admiralty Bay LiDAR Modeling Shorebird Distribution on the North Slope Predicting Future Potential Biomes for Alaska North Slope Land Cover North Slope Alaska Admiralty Bay LiDAR WEAR ShoreZone and ShoreStation Surveys NPS Integrated monitoring within BCR’s: Creating a wildlife monitoring grid for the GPLCC Understanding Arctic Ecosystems: Ecological Mapping and Mapping Field Plot Database for the North Slope Threatened Eider Geodatabase for Northern Alaska Modeling Shorebird Distribution on the North Slope North Slope Land Cover Historical Orthomosaic, Digital Surface Model, and Shoreline Position for the Northern Alaska Coastline Permafrost Database Development, Characterization, and Mapping for Northern Alaska Hydroclimatological Data Rescue, Data Inventory, Network Analysis, and Data Distribution Predicting Future Potential Biomes for Alaska