Skip to main content
Advanced Search

Filters: Tags: GW or SW (X)

121 results (18ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Problem The Village of Endicott relies on wells that supply ground water from sand and gravel aquifers within the Susquehanna River valley. Localized contamination in the Village of Endicott and elsewhere in the Susquehanna River Valley has been documented by U. S. Environmental Protection Agency (USEPA) and the New York State Department of Environmental Conservation (NYSDEC) from a number of commercial and industrial sites. Currently, the Village of Endicott treats its water prior to distribution and can purchase water from other nearby municipal sources as needed. The village would like to find an additional source of clean water to supplement The most viable clean source is likely to be in sand-and-gravel-filled...
thumbnail
Introduction The New York State Department of Transportation (NYSDOT) is evaluating alternative treatments for road deicing with the goal of reducing the impact of this activity on the State’s water resources. The NYSDOT has requested support from the U. S. Geological Survey (USGS) in monitoring the effects of these alternative treatments on the water resources. In the past, the USGS has cooperated with State transportation agencies in studies to evaluate road-deicer concentrations in Massachusetts (Church and others, 1996; Granato and Smith, 1999; and Smith and Granato, 2010) and to determine the impacts on water resources in Ohio and Indiana that included the application of surface-and borehole-geophysical technologies...
thumbnail
This dataset includes well logs used in the creation of the Ellicottville hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS, ESOGIS, and archived material) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
thumbnail
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
Digital hydrogeologic datasets were developed for the Cortland study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar mean elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
The Fishkill/Wappinger study area is located in the vicinity of the towns of Beacon, Wappingers Falls, Poughkeepsie, and Fishkill. Previous USGS reports here include USGS Scientific Investigations Map 3136 (Reynolds and Calef, 2010) and Open-File Report 80-437 (Snavely, 1980). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
This U.S. Geological Survey data release provides surface-water quality, streamflow, and groundwater-elevation data collected within the Central Pine Barrens (CPB) Region of Suffolk County, New York. The data were collected in cooperation with the Central Pine Barrens Commission and the Town of Brookhaven as part of a five-year comprehensive water-resources monitoring program. Water quality and quality-assurance data from seven sites on two rivers (Carmans River- 5 sites and Peconic River - 2 sites) in the CPB are included. Carmans River sites were sampled four times throughout the year (fall, winter, spring, and summer) and Peconic River sites were sampled twice throughout the year (fall and spring). Water-quality...
thumbnail
This data release documents streambed sediment thickness in the Neversink watershed (NY) as determined by field observations and HVSR passive seismic measurements, and were collected as an extension of a previous data set collected in the same watershed (see Associated Items). These measurements were made between May 17, 2021 and May 21, 2021 using MOHO Tromino three-component seismometers (MOHO, S.R.L.). Seismic observations were converted to sediment thickness (depth to bedrock, meters) using the horizontal-to-vertical spectral ratio (HVSR) method. Resonance frequencies were determined from time domain data using GRILLA (MOHO, S.R.L.) software and converted to inferred depth to bedrock for a range of possible...
thumbnail
Problem The Town of Riverhead in the northeastern Suffolk County includes rural farmland and suburbs and is bounded by the Long Island Sound to the north and Peconic Bay to the southeast. Riverhead’s close proximity to saline embayments and its location along the northeastern discharge area for Long Island’s groundwater flow system makes it vulnerable to saltwater intrusion. Several public-supply wells in Riverhead have experienced increased chloride concentrations recently due to the encroachment of saltwater. Riverhead is underlain by a sequence of unconsolidated deposits ranging in age from Pleistocene to Upper Cretaceous that overlie a basement complex of Precambrian bedrock. These deposits are part of Long...
This dataset includes georeferenced TIFF files from three separate reports for the Olean study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology.
The town of Cincinnatus is located in Cortland County, New York. No previous USGS publications are available for the Cincinnatus study area. Subsequently, all subsurface hydrogelogic data was derived from driller well logs. The four child pages below break the data up into interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
thumbnail
Digital hydrogeologic datasets were developed for the Olean study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters (where present) for the main lacustrine unit, lacustrine silt and clay top and bottom elevation rasters (where present) for an upper lacustrine unit, LIDAR minimum elevation raster, lacustrine extent polygons, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot...
thumbnail
This geospatial data set contains groundwater level contours, well locations, and associated metadata that characterize the potentiometric surface near the Rondout pressure-tunnel in High Falls, New York during November 5–7, 2019, and January 21–22, 2020. The pressure tunnel was shut down and partially dewatered for 74 days from November 11, 2019, to January 23, 2020, for inspection and repairs.
thumbnail
This data release contains frequency domain electromagnetic (FDEM) data collected during discrete times between July 2019 to October 2022 near Lake Placid, NY as part of a multi-method effort to monitor the effects of different road salt treatments on groundwater and the surrounding surface water (West Branch Ausable River). The FDEM instrument used was a Geophex GEM-2; a broadband sensor that measures the bulk conductivity and magnetic susceptibility of the subsurface down to approximately 5 meters (16.4 feet) depth. The instrument is hand carried by a single operator and data are collected at walking speeds. Data were repeatedly collected during each campaign at the three sites nicknamed for the planned road salt...
thumbnail
Problem The ground-water flow system underlying the Manhasset Neck Peninsula, which provides potable water to the local population, consists of a complex assemblage of Pleistocene- and Cretaceous-age sediments that form five aquifers and at least two confining units. Recent hydrogeologic mapping in Manhasset Neck indicates significant glacial erosion of the Magothy aquifer, Raritan Clay, and Lloyd aquifer, and several gaps in the confining units that overlie the North Shore and Lloyd aquifers. Five areas of salt-water intrusion have been delineated, two of which are considered active. Several public-supply wells on the Manhasset Neck Peninsula have been shut down in the past as a result of saltwater intrusion....
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Complete, Completed, Cooperative Water Program, GW Model, GW Model, All tags...
thumbnail
Problem - The entire Tug Hill glacial aquifer is a 47-mile-long, crescent-shaped mixture of glacial deposits of predominantly sand and gravel on the western side of the Tug Hill Plateau in Jefferson, Oswego, and Oneida Counties in north central New York. The Tug Hill aquifer can be divided into three parts (northern, central, and southern) based on geohydrological setting, depositional history, and type of glacial deposits (fig. 1). In this study, the name “Tug Hill glacial aquifer” refers only to the 29-mi-long northern and central parts of the Tug Hill aquifer. (The southern part was not included in this investigation.) For this study, the division between the northern and central parts of the aquifer was placed...
thumbnail
Problem - The New York City Department of Environmental Protection (NYCDEP) Stream Management Program, in cooperation with local Soil and Water Conservation Districts, is implementing stream-restoration demonstration projects to decrease channel bed and bank erosion and improve water quality (lower suspended sediment and turbidity) in several priority streams of the Catskill Mountain Region (Fig. 1). A variety of issues relating to (a) the hydraulic geometry of stable and unstable stream channels, (b) validation of underlying assumptions used to characterize channel stability and design, and (c) the effects of restoration on stream-channel geomorphology, stability, biota, and sediment transport have not been...
thumbnail
Problem - The New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH) are concerned about Problem - The New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH) are concerned about ground-water contamination in the carbonate-bedrock aquifers, especially relating to the inadvertent introduction of volatile organic compounds (VOCs) and manure to these aquifers. Groundwater can flow very quickly with minimal filtration or adsorption through solution-widened fractures in carbonate-bedrock aquifers. Therefore, large amounts of water and associated contaminants can move long distances, sometimes in short periods of time, and affect large areas. If these underground...
thumbnail
This dataset includes "smoothing points" used in the creation of the Cortland hydrogeologic framework. Smoothing points were manually added by the project team and were used to enhance interpolated layers using geologic assumptions and include: valley edge points, centerline bedrock points (and where applicable L1 and L2 points), and upland bedrock SURGO points.
The EWWSF study area is located in the vicinity of the towns of Ellenville, Wurtsboro, Woodbourne, and South Fallsburg, in Sullivan and Ulster Counties, New York. The EWWSF study area also extends into parts of Orange County, New York. Previous USGS reports here include USGS Scientific Investigations Map 2960 (Reynolds, 2007), Open-File Report 82-112 (Anderson and others, 1982), and Water Supply Paper 1985 (Frimpter, 1972). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.


map background search result map search result map Hydrogeologic Recharge Settings of the Carbonate-Bedrock Aquifer in Genesee County, Western New York Geomorphology, Biology, & Stability of Catskill Mountain Streams, New York Geohydrology of the Valley-Fill Aquifer in the Nanticoke Creek Valley near Endicott, New York Development of a Ground-Water Flow Model for the Manhasset Neck Peninsula, Nassau County, New York Geohydrology and Water Quality of the Northern and Central Parts of the Tug Hill Glacial Aquifer, Jefferson and Oswego Counties, North Central New York Delineation of the Saltwater-Freshwater Interface at Selected Well Locations in the Town of Riverhead, NY Cortland study area hydrogeologic framework layers Supplementary Points for the Cortland sourcewater study area in upstate New York Olean study area georeferenced TIFFs and digitized data Well Logs for the Ellicottville sourcewater study area in upstate New York Frequency Domain Electromagnetic (FDEM) Geophysical Data Collected near Lake Placid, NY Olean study area hydrogeologic framework layers Interpolation statistics for the Jamestown sourcewater study area in upstate New York Depth to bedrock determined from passive seismic measurements, Neversink River watershed, NY (USA) 2019 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Potentiometric-Surface Contours in a Bedrock Aquifer near High Falls, New York, 2019–2020 Potentiometric-Surface Contours in a Bedrock Aquifer near High Falls, New York, 2019–2020 Development of a Ground-Water Flow Model for the Manhasset Neck Peninsula, Nassau County, New York Frequency Domain Electromagnetic (FDEM) Geophysical Data Collected near Lake Placid, NY Delineation of the Saltwater-Freshwater Interface at Selected Well Locations in the Town of Riverhead, NY Geohydrology of the Valley-Fill Aquifer in the Nanticoke Creek Valley near Endicott, New York Depth to bedrock determined from passive seismic measurements, Neversink River watershed, NY (USA) Well Logs for the Ellicottville sourcewater study area in upstate New York Cortland study area hydrogeologic framework layers Supplementary Points for the Cortland sourcewater study area in upstate New York Hydrogeologic Recharge Settings of the Carbonate-Bedrock Aquifer in Genesee County, Western New York Olean study area georeferenced TIFFs and digitized data 2019 Hydrologic Data Summary for the Central Pine Barrens Region, Suffolk County, New York (ver. 2.0, February 2024) Olean study area hydrogeologic framework layers Geohydrology and Water Quality of the Northern and Central Parts of the Tug Hill Glacial Aquifer, Jefferson and Oswego Counties, North Central New York Interpolation statistics for the Jamestown sourcewater study area in upstate New York Geomorphology, Biology, & Stability of Catskill Mountain Streams, New York