Skip to main content
Advanced Search

Filters: Tags: Geologic Hazards Science Center (X)

235 results (14ms)   

View Results as: JSON ATOM CSV
thumbnail
This inventory was originally created by Zhao (2021) describing the landslides triggered by the M 7.5 Palu, Indonesia earthquake that occurred on 28 September 2018 at 10:02:45 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
Seismicity catalogs, GIS shapefiles, gridded seismic hazard curve data, gridded ground motion data, and mapped gridded ground motion values are available for the 2014 National Seismic Hazard Model for the Conterminous U.S. Probabilistic seismic hazard data and maps of the conterminous U.S. for peak ground acceleration (PGA) and 0.2 and 1.0 second spectral acceleration at probability levels of 2 percent in 50 years (annual probability of 0.000404) and 10 percent in 50 years (annual probability of 0.0021), assuming firm rock soil conditions at 760 m/s, are available. Hazard was calculated on a 0.05 degree by 0.05 degree grid, defined by a bounding box encompassing the conterminous U.S. (-125 to -65 degrees longitude...
thumbnail
Seismicity catalogs, gridded seismic hazard curve data, gridded ground motion data, and mapped gridded ground motion values are available for the 2002 National Seismic Hazard Model for the Conterminous U.S. Seismicity catalogs are available for the western U.S. (in Mw) and central and eastern U.S. (in mb). Probabilistic seismic hazard data and maps of the conterminous U.S. for peak ground acceleration (PGA) and 0.1, 0.2, 0.3, 0.5, 1.0 and 2.0 second spectral acceleration at probability levels of 2 percent in 50 years (annual probability of 0.000404) and 10 percent in 50 years (annual probability of 0.0021), assuming firm rock soil conditions at 760 m/s, are available. Hazard was calculated on a 0.1 degree by 0.1...
thumbnail
Gridded ground motion data and mapped gridded ground motion values are available for the 1999 Alaska Seismic Hazard Model. Probabilistic seismic hazard data and maps of Alaska and the Aleutians for peak ground acceleration (PGA) and 0.2, 0.3, and 1.0 second spectral acceleration at probability levels of 2 percent in 50 years (annual probability of 0.000404) and 10 percent in 50 years (annual probably of 0.0021), assuming firm rock soil conditions at 760 m/s, are available. Development of the 1999 Alaska Seismic Hazard Model is documented in the USGS Open-File Report 99-36 (https://doi.org/10.3133/ofr9936). This dataset is considered a legacy dataset. The original dataset was released at the time of publication...
thumbnail
We generated digital elevation models (DEMs) using pre- and post-event in-track stereo 0.5 m resolution panchromatic Worldview 1 and 2 images (©2019, DigitalGlobe) using the Surface Extraction from TIN-based Searchspace Minimization (SETSM) software [Noh and Howat, 2015] running on the University of Iowa Argon supercomputer (Table S1). The post-event DEMs exhibit along-track striping artifacts common to the Worldview 2 sensor. While de-striping tools, for example within NASAs Ames Stereo Pipeline [Shean et al., 2016], are commonly applied to resolve this issue, a de-striping correction has not been developed for this latitude. Noh, M.-J., and I. M. Howat (2015), Automated stereo-photogrammetric DEM generation...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Landslides are damaging and deadly, and they occur in every U.S. state. However, our current ability to understand landslide hazards at the national scale is limited, in part because spatial data on landslide occurrence across the U.S. varies greatly in quality, accessibility, and extent. Landslide inventories are typically collected and maintained by different agencies and institutions, usually within specific jurisdictional boundaries, and often with varied objectives and information attributes or even in disparate formats. The purpose of this data release is to provide an openly accessible, centralized map of existing information on landslide occurrence across the entire U.S. The data release includes digital...
thumbnail
This data release includes time-series data from a monitoring site located in a small drainage basin in the Arroyo Seco watershed in Los Angeles County, CA, USA (N3788964 E389956, UTM Zone 11, NAD83). The site was established after the 2009 Station Fire and recorded a series debris flows in the first winter after the fire. The data include three types of time-series: (1) 1-minute time series of rainfall, soil water content, channel bed pore pressure and temperature, and flow stage recorded by radar and laser distance meters (ArroyoSecoContinuous.csv); (2) 10-Hz time series of flow stage recorded by the laser distance meter during rain storms (ArroyoSecoStormLaser.csv), and (3) 2-second time series of rainfall and...
thumbnail
Compiled Vs30 measurements obtained by studies funded by the U.S. Geological Survey (USGS) and other governmental agencies. Thus far, there are 2,997 sites in the United States, along with metadata for each measurement from government-sponsored reports, Web sites, and scientific and engineering journals. Most of the data originated from publications directly reporting the work of field investigators. A small subset (less than 20 percent) of Vs30 values was previously compiled by the USGS and other research institutions. Whenever possible, Vs30 originating from these earlier compilations were crosschecked against published reports. Both downhole and surface-based Vs30 estimates are represented. Most of the VS30 data...
thumbnail
Subduction zones are home to the most seismically active faults on the planet. The shallow megathrust interface of subduction zones host our largest earthquakes, and are the only faults capable of M9+ ruptures. Despite these facts, our knowledge of subduction zone geometry - which likely plays a key role in determining the spatial extent and ultimately the size of subduction zone earthquakes - is incomplete. Here we calculate the three- dimensional geometries of all active global subduction zones. The resulting model - Slab2 - provides for the first time a comprehensive geometrical analysis of all known slabs in unprecedented detail.
thumbnail
Chalk Cliffs, located 8 miles southwest of Buena Vista, Colorado, is one of the most active debris-flow areas in the state (U.S. Geological Survey). Three stations were set up at Chalk Cliffs which are located sequentially along a channel draining the 0.3 km2 study area. These stations are equipped with rain gauges, laser distance meters, and data loggers to record rainfall and stage data (Kean, et al., 2020). This data release includes videos of debris-flows and floods captured by high-definition cameras placed at two different locations, associated with the monitoring stations, along the study area at Chalk Cliffs during 2015. Both cameras are located near the Upper Station (Station 1). One is located at the bridge...
thumbnail
This inventory was originally created by Basharat and others (2014) describing the landslides triggered by the M 7.6 Kashmir, Pakistan earthquake that occurred on 8 October 2005 at 03:50:40 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...
thumbnail
This inventory was originally created by Yagi and others (2009) describing the landslides triggered by the M6.9 Eastern Honshu, Japan earthquake that occurred on 2008-06-13 at 23:43:45 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...
thumbnail
This inventory was originally created by Harp and others (2016) describing the landslides triggered by the M 7.0 Haiti earthquake that occurred on 12 January 2010 at 21:53:10 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
This inventory describes the landslides triggered by the M6.5 Friuli, Italy earthquake that occurred on 1976-05-06 at 20:00:11 UTC. The inventory comes from the Italian Catalogue of Earthquake-Induced Ground Effects (Italian acronym CEDIT) by Martino and others (2014), which contains inventories from multiple earthquakes. To obtain the most up to date version of the entire, original catalog along with more details about its compilation, please visit the CEDIT webpage on the website of the Centre for Research (CERI) of the Department of Earth Sciences in the Sapienza University of Rome: http://www.ceri.uniroma1.it/index.php/web-gis/cedit/. Care should be taken when comparing with other inventories because different...
thumbnail
This inventory was originally created by Harp and others (1984) describing the landslides triggered by a sequence of earthquakes, with the largest being the M 6.5 Mammoth Lakes, California earthquake that occurred on 25 May 1980 at 19:44:50 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory includes landslides triggered by a sequence of earthquakes rather than a single mainshock. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and...
thumbnail
The USGS Geomagnetism Program operates a network of magnetic observatories that collect vector and scalar magnetometer data for use in Earth main-field modeling, geophysics research, space physics research, and space weather hazard assessment and mitigation. Until mid-2011, only 1-minute time resolution magnetic field measurements were archived with the INTERMAGNET consortium following international magnetic observatory standards. 1-second time resolution magnetic field measurements, which had already been collected by all the USGS observatories for up to almost a decade prior, started being archived with INTERMAGNET on June 13, 2011, or July 27, 2012 in the case of the more recently constructed Deadhorse (DED)...
thumbnail
The USGS Geomagnetism Program operates a network of magnetic observatories that collect vector and scalar magnetometer data for use in Earth main-field modeling, geophysics research, space physics research, and space weather hazard assessment and mitigation. Until mid-2011, only 1-minute time resolution magnetic field measurements were archived with the INTERMAGNET consortium following international magnetic observatory standards. 1-second time resolution magnetic field measurements, which had already been collected by all the USGS observatories for up to almost a decade prior, started being archived with INTERMAGNET on June 13, 2011, or July 27, 2012 in the case of the more recently constructed Deadhorse (DED)...
thumbnail
This dataset presents where, why, and how much probabilistic ground motions have changed with the 2018 update of the National Seismic Hazard Model (NSHM) for the conterminous U.S. (CONUS) vs. the 2014 NSHM. In the central and eastern U.S., hazard changes are the result of updated ground motion models (further broken down by median and epistemic uncertainty, aleatory variability, and site effects models) and gridded seismicity models. In the western U.S., hazard changes are the result of updated ground motion models in four urban areas with deep sedimentary basins and gridded seismicity models. Probabilistic ground motion changes (2% in 50 years probability of exceedance for a firm rock site, VS30 = 760 m/s, NEHRP...
thumbnail
Peak ground velocity (PGV) gridded probabilistic seismic hazard data for the updated 2018 National Seismic Hazard Model (NSHM) for the Conterminous United States (CONUS). PGV hazard curves and ground motions have been calculated on a 0.05 by 0.05 degree grid using the NSHM CONUS 2018 earthquake source model. PGV support has been incorporated into the NSHM using a newly developed PGV model conditioned on pseudo-spectral acceleration (Abrahamson and Bhasin, 2020, PEER Report No. 2020/05). See Powers et al. (in press) for implementation details. This dataset complements the "Data Release for Additional Period and Site Class Data for the 2018 National Seismic Hazard Model for the Conterminous United States (ver. 1.2,...


map background search result map search result map Harp and others (2016) Basharat and others (2014) Harp and others (1984) Post-wildfire debris-flow monitoring data, Arroyo Seco, 2009 Station Fire, Los Angeles County, California, November 2009 to March 2010. Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Yagi and others (2009) Martino and others (2014) Landslide Inventories across the United States 2016 Mw 6.0 Petermann Ranges earthquake, Australia: Pre- and post-earthquake digital elevation models Data Release for the 2002 National Seismic Hazard Model for the Conterminous U.S. Data Release for the 2014 National Seismic Hazard Model for the Conterminous U.S. Data Release for the 2018 Update of the U.S. National Seismic Hazard Model: Where, Why, and How Much Probabilistic Ground Motion Maps Changed Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2015 Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States Zhao (2021) One-second USGS College (CMO) magnetic observatory data collected before 2013 One-second USGS Guam (GUA) magnetic observatory data collected before 2013 Debris-flow and Flood Video Files, Chalk Cliffs, Colorado, USA, 2015 One-second USGS College (CMO) magnetic observatory data collected before 2013 One-second USGS Guam (GUA) magnetic observatory data collected before 2013 Yagi and others (2009) Martino and others (2014) Basharat and others (2014) Harp and others (1984) 2016 Mw 6.0 Petermann Ranges earthquake, Australia: Pre- and post-earthquake digital elevation models Slab2 - A Comprehensive Subduction Zone Geometry Model, Pamir Region Data Release for the 2002 National Seismic Hazard Model for the Conterminous U.S. Data Release for the 2014 National Seismic Hazard Model for the Conterminous U.S. Data Release for the 2018 Update of the U.S. National Seismic Hazard Model: Where, Why, and How Much Probabilistic Ground Motion Maps Changed Data Release for PGV Data for the 2018 National Seismic Hazard Model for the Conterminous United States Slab2 - A Comprehensive Subduction Zone Geometry Model, South America Region Landslide Inventories across the United States