Skip to main content
Advanced Search

Filters: Tags: Geosphere (X)

124 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
Dissected caldera structures expose thick intracaldera tuff and, uncommonly, cogenetic shallow plutons, while remnants of correlative outflow tuffs deposited on the pre-eruption ground surface record elements of ancient landscapes. The Middle Fork caldera encompasses a 10 km × 20 km area of rhyolite welded tuff and granite porphyry in east-central Alaska, ∼100 km west of the Yukon border. Intracaldera tuff is at least 850 m thick. The K-feldspar megacrystic granite porphyry is exposed over much of a 7 km × 12 km area having 650 m of relief within the western part of the caldera fill. Sensitive high-resolution ion microprobe with reverse geometry (SHRIMP-RG) analyses of zircon from intracaldera tuff, granite porphyry,...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Mudstone pore networks are strong modifiers of sedimentary basin fluid dynamics and have a critical role in the distribution of hydrocarbons and containment of injected fluids. Using core samples from continental and marine mudstones, we investigate properties of pore types and networks from a variety of geologic environments, together with estimates of capillary beam- scanning electron microscopy, suggest seven dominant mudstone pore types distinguished by geometry and connectivity. A dominant planar pore type occurs in all investigated mudstones and generally has high coordination numbers (i.e., number of neighboring connected pores). Connected networks of pores of this type contribute to high mercury capillary...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Despite the role of the Alaska-Aleutian megathrust as the source of some of the largest earthquakes and tsunamis, the history of its pre–twentieth century tsunamis is largely unknown west of the rupture zone of the great (magnitude, M 9.2) 1964 earthquake. Stratigraphy in core transects at two boggy lowland sites on Chirikof Island’s southwest coast preserves tsunami deposits dating from the postglacial to the twentieth century. In a 500-m-long basin 13–15 m above sea level and 400 m from the sea, 4 of 10 sandy to silty beds in a 3–5-m-thick sequence of freshwater peat were probably deposited by tsunamis. The freshwater peat sequence beneath a gently sloping alluvial fan 2 km to the east, 5–15 m above sea level...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
A dramatic seismicity rate increase in the central and eastern United States (CEUS) over the past decade has been largely associated with the increase in enhanced oil and gas recovery operations and change in industry practices. However, certain areas of the CEUS that have experienced large increases in oil and gas operations, such as the Bakken and Marcellus Shale plays (Williston and Appalachian Basins, respectively), have very little (if any) induced seismicity. No prior study has adequately explained the occurrence or absence of induced seismicity on a regional, basin-to-basin scale in the CEUS. In this study, we improve the basement depth characterization and induced seismicity detection for the Appalachian,...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
We present evidence that the Seattle fault zone of Washington State extends to the west edge of the Puget Lowland and is kinemati-cally linked to active faults that border the Olympic Massif, including the Saddle Moun-tain deformation zone. Newly acquired high-resolution seismic reflection and marine magnetic data suggest that the Seattle fault zone extends west beyond the Seattle Basin to form a >100-km-long active fault zone. We provide evidence for a strain transfer zone, expressed as a broad set of faults and folds connecting the Seattle and Saddle Mountain deformation zones near Hood Canal. This connection provides an explanation for the apparent synchroneity of M7 earthquakes on the two fault systems ~1100...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Multistage histories of incremental accumulation, fractionation, and solidification during construction of large subvolcanic magma bodies that remained sufficiently liquid to erupt are recorded by Tertiary ignimbrites, source calderas, and granitoid intrusions associated with large gravity lows at the Southern Rocky Mountain volcanic field (SRMVF). Geophysical data combined with geological constraints and comparisons with tilted plutons and magmatic-arc sections elsewhere are consistent with the presence of vertically extensive (>20 km) intermediate to silicic batholiths (with intrusive:extrusive ratios of 10:1 or greater) beneath the major SRMVF volcanic loci (Sawatch, San Juan, Questa-Latir). Isotopic data require...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Sources of seismic hazard in the Puget Sound region of northwestern Washington include deep earthquakes associated with the Cascadia subduction zone, and shallow earthquakes associated with some of the numerous crustal (upper-plate) faults that crisscross the region. Our paleoseismic investigations on one of the more prominent crustal faults, the Darrington–Devils Mountain fault zone, included trenching of fault scarps developed on latest Pleistocene glacial sediments and analysis of cores from an adjacent wetland near Lake Creek, 14 km southeast of Mount Vernon, Washington. Trench excavations revealed evidence of a single earthquake, radiocarbon dated to ca. 2 ka, but extensive burrowing and root mixing of sediments...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Characterizations of tsunami hazards along the Cascadia subduction zone hinge on uncertainties in megathrust rupture models used for simulating tsunami inundation. To explore these uncertainties, we constructed 15 megathrust earthquake scenarios using rupture models that supply the initial conditions for tsunami simulations at Bandon, Oregon. Tsunami inundation varies with the amount and distribution of fault slip assigned to rupture models, including models where slip is partitioned to a splay fault in the accretionary wedge and models that vary the updip limit of slip on a buried fault. Constraints on fault slip come from onshore and offshore paleoseismological evidence. We rank each rupture model using a logic...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confined mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Neogene (Miocene–Pliocene) sedimentary rocks of the northeastern Sierra Nevada were deposited in small basins that formed in response to volcanic and tectonic activity along the eastern margin of the Sierra. These strata record an early phase (ca. 11–10 Ma) of extension and rapid sedimentation of boulder conglomerates and debrites deposited on alluvial fans, followed by fluvio-lacustrine sedimentation and nearby volcanic arc activity but tectonic quiescence, until ~ 2.6 Ma. The fossil record in these rocks documents a warmer, wetter climate featuring large mammals and lacking the Sierran orographic rain shadow that dominates climate today on the eastern edge of the Sierra. This record of a general lack of paleo-relief...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Thermal histories are modeled from new apatite (U-Th)/He and apatite fission-track data in order to quantitatively constrain the landscape evolution of the Grand Canyon region. Fifty new samples and their associated thermochronometric ages are presented here. Samples span from Lee’s Ferry in the east to Quartermaster Canyon in the west and include four age-elevation transects into Grand Canyon and borehole samples from the Coconino Plateau. Twenty-seven samples are inversely modeled to provide continuous thermal histories. This represents the most extensive and complete dataset on patterns of long-term exhumation in the Grand Canyon region, and it enables us to constrain the timing and magnitude of erosion and also...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Studies of active fault zones have flourished with the availability of high-resolution topographic data, particularly where airborne light detection and ranging (lidar) and structure from motion (SfM) data sets provide a means to remotely analyze submeter-scale fault geomorphology. To determine surface offset at a point along a strike-slip earthquake rupture, geomorphic features (e.g., stream channels) are measured days to centuries after the event. Analysis of these and cumulatively offset features produces offset distributions for successive earthquakes that are used to understand earthquake rupture behavior. As researchers expand studies to more varied terrain types, climates, and vegetation regimes, there is...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Limestone beds underlain and overlain by alluvial fan conglomerate near Amboy, California, are very similar in many respects to parts of the Bouse Formation, suggesting that an arm of the Pliocene Bouse water body extended across a wide part of the southern Mojave Desert. The deposits are north of the town of Amboy at and below an elevation of 290 m, along the northern piedmont of the Bristol “dry” Lake basin. The Amboy outcrops contain the Lawlor Tuff (4.83 Ma), which is also found in an outcrop of the Bouse Formation in the Blythe basin near Buzzards Peak in the Chocolate Mountains, 180 km southeast of Amboy. Bouse exposures near Amboy are ∼3.4 m thick, white, distinctly bedded, with limestone and calcareous sandstone...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Northern Nevada contains ∼360 igneous intrusions subequally distributed among three age groups: middle Tertiary, Cretaceous, and Jurassic. These intrusions are dominantly granodiorite and monzogranite, although some are more mafic. Major-oxide and trace-element compositions of intrusion age groups are remarkably similar, forming compositional arrays that are continuous, overlapping, and essentially indistinguishable. Within each age group, compositional diversity is controlled by a combination of fractional crystallization and two-component mixing. Mafic intrusions represent mixing of mantle-derived magma and assimilated continental crust, whereas intermediate to felsic intrusions evolved by fractional crystallization....
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
The Lawlor Tuff is a widespread dacitic tephra layer produced by Plinian eruptions and ash flows derived from the Sonoma Volcanics, a volcanic area north of San Francisco Bay in the central Coast Ranges of California, USA. The younger, chemically similar Huichica tuff, the tuff of Napa, and the tuff of Monticello Road sequentially overlie the Lawlor Tuff, and were erupted from the same volcanic field. We obtain new laser-fusion and incremental-heating 40Ar/39Ar isochron and plateau ages of 4.834 ± 0.011, 4.76 ± 0.03, ≤4.70 ± 0.03, and 4.50 ± 0.02 Ma (1 sigma), respectively, for these layers. The ages are concordant with their stratigraphic positions and are significantly older than those determined previously by...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
The Eastern Transverse Ranges, adjacent to and southeast of the big left bend of the San Andreas fault, southern California, form a crustal block that has rotated clockwise in response to dextral shear within the San Andreas system. Previous studies have indicated a discrepancy between the measured magnitudes of left slip on through-going east-striking fault zones of the Eastern Transverse Ranges and those predicted by simple geometric models using paleomagnetically determined clockwise rotations of basalts distributed along the faults. To assess the magnitude and source of this discrepancy, we apply new gravity and magnetic data in combination with geologic data to better constrain cumulative fault offsets and...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
The youngest part of the Farewell terrane in interior Alaska (USA) is the enigmatic Devonian–Cretaceous Mystic subterrane. New U-Pb detrital zircon, fossil, geochemical, neodymium isotopic, and petrographic data illuminate the origin of the rocks of this subterrane. The Devonian–Permian Sheep Creek Formation yielded youngest detrital zircons of Devonian age, major detrital zircon age probability peaks between ca. 460 and 405 Ma, and overall age spectra like those from the underlying Dillinger subterrane. Samples are sandstones rich in sedimentary lithic clasts, and differ from approximately coeval strata to the east that have abundant volcanic lithic clasts and late Paleozoic detrital zircons. The Permian Mount...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing significant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area,...
Categories: Publication; Types: Citation; Tags: Geosphere
thumbnail
Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three...
Categories: Publication; Types: Citation; Tags: Geosphere


map background search result map search result map Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history Constraints on the history and topography of the Northeastern Sierra Nevada from a Neogene sedimentary basin in the Reno-Verdi area, Western Nevada Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA Constraints on the history and topography of the Northeastern Sierra Nevada from a Neogene sedimentary basin in the Reno-Verdi area, Western Nevada Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history