Skip to main content
Advanced Search

Filters: Tags: Global change (X)

26 results (116ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
We investigated experimental warming and simulated grazing (clipping) effects on rangeland quality, as indicated by vegetation production and nutritive quality, in winter-grazed meadows and summer-grazed shrublands on the Tibetan Plateau, a rangeland system experiencing climatic and pastoral land use changes. Warming decreased total aboveground net primary productivity (ANPP) by 40 g.m?�.yr?� at the meadow habitats and decreased palatable ANPP (total ANPP minus non-palatable forb ANPP) by 10 g.m?�.yr?� at both habitats. The decreased production of the medicinal forb Gentiana straminea and the increased production of the non-palatable forb Stellera chamaejasme with warming also reduced rangeland quality. At the shrubland...
Abstract (from http://www.esajournals.org/doi/abs/10.1890/11-2296.1): Physiological tolerance of environmental conditions can influence species-level responses to climate change. Here, we used species-specific thermal tolerances to predict the community responses of ant species to experimental forest-floor warming at the northern and southern boundaries of temperate hardwood forests in eastern North America. We then compared the predictive ability of thermal tolerance vs. correlative species distribution models (SDMs) which are popular forecasting tools for modeling the effects of climate change. Thermal tolerances predicted the responses of 19 ant species to experimental climate warming at the southern site,...
thumbnail
National Wildlife Refuges (NWRs) along the East Coast of the United States protect habitat for a host of wildlife species, while also offering storm surge protection, improving water quality, supporting nurseries for commercially important fish and shellfish, and providing recreation opportunities for coastal communities. Yet in the last century, coastal ecosystems in the eastern U.S. have been severely altered by human development activities as well as sea-level rise and more frequent extreme events related to climate change. These influences threaten the ability of NWRs to protect our nation’s natural resources and to sustain their many beneficial services. Through this project, researchers are collaborating with...
Abstract (from MDPI ) Sleeper species are innocuous native or naturalized species that exhibit invasive characteristics and become pests in response to environmental change. Climate warming is expected to increase arthropod damage in forests, in part, by transforming innocuous herbivores into severe pests: awakening sleeper species. Urban areas are warmer than natural areas due to the urban heat island effect and so the trees and pests in cities already experience temperatures predicted to occur in 50–100 years. We posit that arthropod species that become pests of urban trees are those that benefit from warming and thus should be monitored as potential sleeper species in forests. We illustrate this with two case...
This study investigated how CO2and temperature affect dry weight (d.wt) accumulation, total nonstructural carbohydrate (TNC) concentration, and partitioning of C and N among organs of two important grasses of the shortgrass steppe,Pascopyrum smithii Rydb. (C3) andBouteloua gracilis(H.B.K.) Lag. ex Steud. (C4). Treatment combinations comprised two temperatures (20 and 35�C) at two concentrations of CO2(380 and 750 ?mol mol-1), and two additional temperatures of 25 and 30�C at 750 ?mol mol-1CO2. Plants were maintained under favourable nutrient and soil moisture and harvested following 21, 35, and 49d of treatment. CO2-induced growth enhancements were greatest at temperatures considered favourable for growth of these...
The biodiversity convention aims at conserving biodiversity and guaranteeing fair and sustainable human use of biodiversity. The convention further requires that the causes of biodiversity decline are identified and evaluated, and that effective conservation and monitoring strategies are developed. Resolving these needs requires a different approach than those described in the last Global Biodiversity Assessment. This assessment tended to be descriptive and did not comprehensively attempt to describe future trends in biodiversity in relation to the major threats: habitat destruction, overexploitation, alien species, pollution and climate change. Integrated assessment modelling and scenario development have therefore...
Global change and habitat fragmentation are critical issues in our society. While considerable progress has been made in these issues worldwide, the unique features of the agroecosystems in the Great Plains have not been given enough attention. In this region, croplands occupy the majority of the landscape, forming the mosaics with linear riparian zones and shelterbelts. These three elements play different roles in the maintenance of biodiversity, and their continued effectiveness under a changing climate is critical to maintaining a healthy and productive agricultural ecosystem. This article evaluates current research and discusses future directions. The goal is to provide a scientific base for future conservation...
thumbnail
The USGS Western Ecological Research Center (WERC) comprises a dispersed science community collocated with DOI agencies, academic institutions, or proximal to critical ecosystems. WERC scientists conduct peer-reviewed research using innovative tools to provide natural resource managers with the knowledge to address challenges to ecosystem function and service in Pacific West landscapes. Four Scientific Themes define the research of WERC scientists: Species and Landscape Response to Human Activity Renewable energy development, urbanization, water abatement, prescribed fires, barriers to movement, and invasive species are among key factors that impact Pacific western US natural resources. To identify potential impacts...
Humans have exerted large-scale changes on the terrestrial biosphere, primarily through agriculture; however, the impacts of such changes on the hydrologic cycle are poorly understood. The purpose of this study was to test the hypothesis that the conversion of natural rangeland ecosystems to agricultural ecosystems impacts the subsurface portion of the hydrologic cycle by changing groundwater recharge and flushing salts to underlying aquifers. The hypothesis was examined through point and areal studies investigating the effects of land use/land cover (LU/LC) changes on groundwater recharge and solute transport in the Amargosa Desert (AD) in Nevada and in the High Plains (HP) in Texas, US. Studies use the fact that...
Although climate change is an important factor affecting inland fishes globally, a comprehensive review of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We conducted an extensive, systematic primary literature review to identify peer-reviewed publications with projected and documented examples of climate change impacts on inland fishes globally. Since the mid-1980s, scientists have projected the effects of climate change on inland fishes, and more recently, documentation of climate change impacts on inland fishes has increased. Of the thousands of title and abstracts reviewed, we selected 624 publications for a full text review: 63 of these publications...
The Prairie Heating and CO2 Enrichment (PHACE) experiment has been initiated at a site in southern Wyoming (USA) to simulate the impact of warming and elevated atmospheric CO2 on ecosystem dynamics for semiarid grassland ecosystems. The DAYCENT ecosystem model was parametrized to simulate the impact of elevated CO2 at the open-top chamber (OTC) experiment in north-eastern Colorado (1996-2001), and was also used to simulate the projected ecosystem impact of the PHACE experiments during the next 10 yr. Model results suggest that soil water content, plant production, soil respiration, and nutrient mineralization will increase for the high-CO2 treatment. Soil water content will decrease for all years, while nitrogen...
Compiled 1086 datasets of plant seed production spanning 1900-2013 and from around the world were binned into 2-decade periods for which CV (coefficient of variation) of seed set was calculated. Skewness, dip test, mean, and kurtosis were calculated for the same periods.
Desert soil surfaces are generally covered with biological soil crusts, a group of organisms dominated by cyanobacteria, lichens, and mosses. Despite their unassuming appearance, these tiny organisms are surprisingly critical to many processes in past and present desert ecosystems and are vital in creating and maintaining fertility of desert soils. They fix both carbon and nitrogen, much of which is leaked to the soils below. They stabilize soils, capture nutrient-rich dust, and can stimulate plant growth. These organisms must tolerate extreme temperatures, drought, and solar radiation, despite having relatively few wet hours for metabolic activity. Under most circumstances, they are extremely vulnerable to climate...
Contents Summary1I.Introduction2II.Variation in plant C : N : P ratios: how much and what are the sources?3III.The growth rate hypothesis in terrestrial plants and the scaling of whole-plant N : P stoichiometry and production5IV.Scaling from tissues to whole plants7V.Applications: large-scale patterns and processes associated with plant stoichiometry9VI.Global change and plants: a stoichiometric scaling perspective11VII.Synthesis and summary12Acknowledgements13References13 Summary Biological stoichiometry theory considers the balance of multiple chemical elements in living systems, whereas metabolic scaling theory considers how size affects metabolic properties from cells to ecosystems. We review recent developments...
In the absence of human activities, biological N fixation is the primary source of reactive N, providing about 90–130 Tg N year−1 (Tg = 1012 g) on the continents. Human activities have resulted in the fixation of an additional 150 Tg N year−1 by energy production, fertilizer production, and cultivation of crops (e.g., legumes, rice). Some sinks of anthropogenic N have been estimated (e.g., N2O accumulation in the atmosphere; loss to coastal oceans), however due to the uncertainty around the magnitude of other sinks (e.g., retention in groundwater, soils, or vegetation or denitrification to N2) a possibly large portion of the N fixed by humans is missing. While we know that N is accumulating in the environment,...
Reduced water depth in dry years has been proposed to interact with ultraviolet-B (UV-B) radiation and a pathogenic fungus to cause episodes of high mortality of amphibian embryos. Observations of breeding phenology of boreal chorus frogs (Pseudacris maculata) in Colorado from 1986 to 2001 show that dry years result in earlier breeding. The earliest and latest dates of maximum calling activity by males were 20 May and 16 June, and the date of maximum calling was strongly related to the amount of snow accumulation during the winter. Surface UV-B flux, estimated from satellite-based measurements, was positively related to date of maximum calling. In dry years, surface UV-B during calling was reduced by an amount similar...
In order to study the likely effects of global warming on future ecosystems, a method for applying a heating treatment to open-field plant canopies (i.e. a temperature free-air controlled enhancement (T-FACE) system) is needed which will warm vegetation as expected by the future climate. One method which shows promise is infrared heating, but a theory of operation is needed for predicting the performance of infrared heaters. Therefore, a theoretical equation was derived to predict the thermal radiation power required to warm a plant canopy per degree rise in temperature per unit of heated land area. Another equation was derived to predict the thermal radiation efficiency of an incoloy rod infrared heater as a function...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/gcb.12642/abstract): Predicting biodiversity responses to climate change remains a difficult challenge, especially in climatically complex regions where precipitation is a limiting factor. Though statistical climatic envelope models are frequently used to project future scenarios for species distributions under climate change, these models are rarely tested using empirical data. We used long-term data on bird distributions and abundance covering five states in the western US and in the Canadian province of British Columbia to test the capacity of statistical models to predict temporal changes in bird populations over a 32-year period. Using boosted regression...
Summer monsoonal rains (the southwest monsoon) are an important source of moisture for parts of the southwestern United States and northern Mexico. Improved documentation of the variability in the southwest monsoon is needed because changes in the amount and seasonal distribution of precipitation in this semiarid region of North America influence overall water supply and fire severity. Comparison of abundance variations in the planktic foraminifer Globigerinoides sacculifer in marine cores from the western and northern Gulf of Mexico with terrestrial proxy records of precipitation (tree-ring width and packrat-midden occurrences) from the southwestern United States indicate that G. sacculifer abundance is a proxy...


map background search result map search result map USGS Western Ecological Research Center Climate Change Adaptation for Coastal National Wildlife Refuges Climate Change Adaptation for Coastal National Wildlife Refuges