Skip to main content
Advanced Search

Filters: Tags: Grasslands and Plains (X) > Categories: Data (X)

58 results (67ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI. Both types of MI was estimated as a ratio of...
Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI. Both types of MI was estimated as a ratio of...
thumbnail
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
thumbnail
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
thumbnail
The INL Ecohydrology Experiment uses irrigation to simulate increased winter or summer precipitation. Treatments include a doubling of annual precipitation added in summer (four 50-mm events) or in winter (two 100-mm events added), and non-irrigated control plots. Standard USDA species abbreviations are used.
thumbnail
This data set includes a dropped-edge analysis of grassland and forest networks in the South Central United States based on land cover data from 2006 and graph theory to evaluate Landscape Resistance to Dispersal (LRD). LRD represents the degree to which habitat availability limits species movement. LRD decreases as habitat availability increases and increases as habitat availability decreases. This data set includes a range of LRD thresholds to represent species with different dispersal abilities and responses to landscape structure. A threshold indicates the highest LRD that still allows dispersal by a particular group of species. LRD thresholds are included in the data set, with low values representing connectivity...
thumbnail
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
thumbnail
This data set contains daily survival rates from 81 studies of passerine obligate grassland bird species that primarily breed in the United States; patch size information was extracted when available. Temperature and precipitation variables were calculated for the study sites and years the data were collected. The studies we used collected data across the period 1978 to 2013.
thumbnail
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
thumbnail
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
thumbnail
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
thumbnail
We used land cover projections for 2011 and 2050 of two scenarios derived from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES). Scenario A1B emphasizes economic growth with a global orientation and scenario B2 focuses on environmental sustainability with a regional view. Our study area included counties within the southern Great Plains ecoregion in Oklahoma, Texas, and New Mexico. We calculated changes in landscape connectivity (dECA) between 2011 and 2050 for different species groups and landscape scenarios. We also calculated changes in habitat suitability (dA). We assessed the degree to which changes in landscape connectivity were influenced by changes in grassland...
Winter climate change has the potential to have a large impact on coastal wetlands in the southeastern U.S. Warmer winter temperatures and reductions in the intensity of freeze events would likely lead to mangrove forest range expansion and salt marsh displacement in parts of the U.S. Gulf of Mexico and Atlantic coast. The objective of this research was to better understand some of the ecological implications of mangrove forest migration and salt marsh displacement. The potential ecological effects of mangrove migration are diverse ranging from important biotic impacts (e.g., coastal fisheries, land bird migration; colonial nesting wading birds) to ecosystem stability (e.g., response to sea level rise and drought;...
thumbnail
Establishing connections among natural landscapes is the most frequently recommended strategy for adapting management of natural resources in response to climate change. The U.S. Northern Rockies still support a full suite of native wildlife, and survival of these populations depends on connected landscapes. Connected landscapes support current migration and dispersal as well as future shifts in species ranges that will be necessary for species to adapt to our changing climate. Working in partnership with state and federal resource managers and private land trusts, we sought to: 1) understand how future climate change may alter habitat composition of landscapes expected to serve as important connections for wildlife,...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
The following files are designed to be run using the Path Landscape Model software, version 3.0.4. Later versions of the software cannot run these files. To get a copy of this software, please contact Apex RMS at path@apexrms.com. 1) Path models MUST be run with the provided .MCM and .trd mulitplier files to apply the required transition probability adjustments for procesess such as insect outbreaks, wildfire, and climate change trends. Each Path database is set up with three folders: - The 'Common' folder contains a single Path scenario (also named 'Common'). The Transitions tab within the Common scenario contains the climate-smart STM. - The 'Multipliers' folder contains multipliers specific to each ownership-allocation...


map background search result map search result map Field Notes - Scanned Field Data Sheets and Field Notebook Pages for the following project - Ecological implications of mangrove forest migration in the southeastern US (2012-2013) Laboratory Notes - Scanned Laboratory Notebook Pages for the following project - Ecological implications of mangrove forest migration in the southeastern US (2012-2-13) New soil data collection: subplot-level shear strength New porewater data collection: subplot-level physicochemical Idaho National Laboratory (INL) Ecohydrology Experiment Data Potential climate change impacts on alpine connectivity in the U.S. Northern Rockies Potential climate change impacts on bighorn sheep connectivity in the U.S. Northern Rockies Potential climate change impacts on forest connectivity in the U.S. Northern Rockies Potential climate change impacts on grassland connectivity in the U.S. Northern Rockies Potential climate change impacts on grizzly bear connectivity in the U.S. Northern Rockies Potential climate change impacts on mountain goat connectivity in the U.S. Northern Rockies Daily Survival Rates of Grassland Passerines and Associated Weather Variables (1978-2013) Land use change and fragmentation of Theodore Roosevelt Greater Wildland Ecosystems (GWE) using LANDFIRE data Future changes in landscape connectivity for grassland species in the southern Great Plains based on a scenario of future land-use change that focuses on environmental sustainability with a regional view Dropped-edge analysis of terrestrial connectivity of grassland and forest networks in the South Central United States based on the National Land Cover Database from 2006 Future Spotted Owl Habitat Scenarios, Northwest Washington Study Area, 2007-2096 Future Spotted Owl Habitat Scenarios, Northwest Washington Study Area, 2007-2096 Idaho National Laboratory (INL) Ecohydrology Experiment Data Field Notes - Scanned Field Data Sheets and Field Notebook Pages for the following project - Ecological implications of mangrove forest migration in the southeastern US (2012-2013) Laboratory Notes - Scanned Laboratory Notebook Pages for the following project - Ecological implications of mangrove forest migration in the southeastern US (2012-2-13) New soil data collection: subplot-level shear strength New porewater data collection: subplot-level physicochemical Land use change and fragmentation of Theodore Roosevelt Greater Wildland Ecosystems (GWE) using LANDFIRE data Potential climate change impacts on alpine connectivity in the U.S. Northern Rockies Potential climate change impacts on bighorn sheep connectivity in the U.S. Northern Rockies Potential climate change impacts on forest connectivity in the U.S. Northern Rockies Potential climate change impacts on grassland connectivity in the U.S. Northern Rockies Potential climate change impacts on grizzly bear connectivity in the U.S. Northern Rockies Potential climate change impacts on mountain goat connectivity in the U.S. Northern Rockies Future changes in landscape connectivity for grassland species in the southern Great Plains based on a scenario of future land-use change that focuses on environmental sustainability with a regional view Dropped-edge analysis of terrestrial connectivity of grassland and forest networks in the South Central United States based on the National Land Cover Database from 2006 Daily Survival Rates of Grassland Passerines and Associated Weather Variables (1978-2013)