Skip to main content
Advanced Search

Filters: Tags: Great Lakes (X) > Extensions: Project (X)

30 results (79ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Description of Work Since 2010, connecting channels have been included in each of the Great Lakes’ Lake Management Plans (LaMPs). Lake Ontario now includes both the Niagara River and the St. Lawrence River. The Niagara River is well characterized by a number of long-term programs, but because of the lack of tributary water-quality data, the St. Lawrence River and its tributaries constitute a data gap in the information needed for the Lake Ontario to fulfill its goals. Critical information needs, including basic water-quality parameters, total suspended solids, nutrients and flow data. These data are needed to aid in the identification of sources of nutrient and sediment loading to the St. Lawrence. The monitoring...
thumbnail
Problem – Currently, swim advisories or closings are issued by beach managers based on standards for concentrations of bacterial indicators such as Escherichia coli (E. coli). Standard culture methods for these bacteria take at least 18-24 hours before results are available. At most Great Lakes beaches, the beach is posted with an advisory or closing or is determined to be acceptable for swimming on the basis of the previous day’s E. coli concentration. Sanitary conditions may change overnight and even throughout the day (Boehm and others, 2002) making decisions made from previous days information incorrect. Because of this time-lag issue, water-resource managers are seeking solutions that provide near real-time...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Contaminants, Microbial, Contaminants, Microbial, Contaminants, Natural, Contaminants, Natural, Contaminants, Organic, All tags...
thumbnail
Description of Work USGS is creating forecasting tools for managers to determine how water withdrawals or other hydrologic or land use changes in watersheds may affect Great Lakes ecosystems. This project is determining fish distributions in Great Lakes tributaries and how changes in stream flow may affect them. This information will help guide restoration efforts to achieve maximum effectiveness and success. Estimates were produced using WATER - a TOPMODEL based tool that estimates streamflow at any point along the stream network. The pour point is selected using a point-and-click GUI that samples information about the basin using a geodatabase of topographic and soil data spatial layers.
thumbnail
Completion of the National Wildlife Inventory has been identified as a top science priority for the Upper Midwest and Great Lakes-LCC (UMGL). Some areas of Minnesota and Wisconsin still have not been mapped to NWI standards. Completion of NWI is integral to developing geospatial models based on landscape-level land use. Completion of NWI will also aid in monitoring of wetlands to assess effects of climate change. Funding for this project has been leveraged with several other larger projects to improve digital wetland mapping infrastructure for Michigan, Minnesota and Wisconsin. This project is targeting a portions of Wisconsin, at least six counties, for digital conversion and updating of Wetland Inventory maps....
thumbnail
Description of Work The first objective of this project is to restore Atlantic salmon in Lake Ontario and the St. Lawrence River through development of new and innovative restoration techniques and evaluation of multiple salmon strains to determine their suitability for restoration. A primary focus of Atlantic salmon restoration is to evaluate survival of new strains of salmon stocked into Lake Ontario. As part of this project, the Sebago strain is being stocked into the lake and other strains are being considered for use based on life history characteristics and egg availability. This approach includes acquisition of Atlantic salmon eggs, rearing of salmon to various life stages (fry, fingerlings, smolts), marking,...
thumbnail
An experienced team of wetland ecologists, geographers, and software engineers used a geodesign process to develop and host a web-based geospatial application that will support the identification and restoration of potential coastal wetlands (i.e., areas that could be restored to coastal wetlands if hydrologically connected to the Great Lakes) along the U.S. coast of the Great Lakes. Techniques, data types, and analysis approaches used in the recent Western Lake Erie Restoration Assessment (WLERA) model are being extended to include other priority coastal areas of the Great Lakes. The first phase of the work produced three restoration assessments for the pilot area identified by the LCC Coastal Working Group (U.S....
thumbnail
Researchers assessed how an expansion of forest reserves and climate-adaptive management may improve ecological connectivity and resilience under different climate scenarios. Resilience is measured as the capacity for these systems to maintain extant forest communities and aboveground live biomass. Forest landscape change was simulated via a spatially explicit forest ecosystem model, LANDIS-II. Simulations covered areas in northern Minnesota and northern lower Michigan that represent northern Great Lakes forest types. Restoring and maintaining ecological connectivity is one of the primary climate change adaptation strategies available to land managers, in addition to silvicultural practices. This study is...
thumbnail
As a major threat to global biodiversity, climate change will alter where and how we manage conservation lands (e.g., parks, refuges, wildlife management areas, natural areas). As a new challenge with high uncertainty, many conservation practitioners have yet to consider how to minimize their greenhouse gas contributions (i.e., mitigation), or reduce the vulnerability of natural systems to climatechange (i.e., adaptation). This is particularly true for conservation land managers; because they are often pressed for time and resources, few have initiated long-term climate change planning and amended management activities. Furthermore, where available, climate change guidance is often coarse-level, vague, and beyond...
thumbnail
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport...
thumbnail
Climate change is expected to alter the distributions and community composition of stream fishes in the Great Lakes region in the 21st century, in part as a result of altered hydrological systems (stream temperature, streamflow, and habitat). Resource managers need information and tools to understand where fish species and stream habitats are expected to change under future conditions. Fish sample collections and environmental variables from multiple sources across the United States Great Lakes Basin were integrated and used to develop empirical models to predict fish species occurrence under present-day climate conditions. Random Forests models were used to predict the probability of occurrence of 13 lotic fish...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service, Shapefile; Tags: 2011, 2011, 2012, 2012, 2013, All tags...
thumbnail
Great Lakes coastal wetlands provide critical habitat for many species of birds, mammals, reptiles, and amphibians, and provide essential spawning and nursery habitat for many fish species of ecologic and economic importance. Additionally, coastal wetlands trap, process, and retain nutrients and sediment. Unfortunately, half of the coastal wetland area that was present before European settlement has been converted to other land uses and many remaining wetlands are impacted by invasive species, fragmentation, nutrient loading, and hydrologic manipulation. Because of their ecological value and the extensive degradation that has occurred in coastal wetlands, interest in protection and restoration has increased dramatically...
thumbnail
Capacity to prioritize barrier removals in the Great Lakes basin is currently limited by lack of data on the passability of road crossings and dams for both unwanted invasive species and desirable native migratory fishes. Building upon our initial barrier inventory, this project has two key elements. First, we are testing whether our landscape statistical models accurately predict the upstream limits of fish migrations along the Wisconsin coast of Lake Michigan. This involves intensive field work to determine the actual upstream limits of suckers, pike, and steelhead during the spring migration. Second, we are collecting systematic data on the size and condition of dams throughout the Lake Michigan basin. These...
thumbnail
Description of Work The first major goal of this project is to characterize and evaluate the extent to which contaminants of emerging concern (CECs) threaten fish and other wildlife in the Great Lakes. This includes identifying and characterizing CECs in the Great Lakes Basin, identifying risk-based screening concentrations for priority CECs, evaluating population-relevant effects of complex mixtures on biota, and identifying the Great Lakes waterways at greatest risk. The second major goal of this project is to pilot and develop a short-term and an ongoing long-term state-of-the-art bioeffects surveillance program for the Great Lakes basin. This includes developing strategies which will account for variable conditions...
thumbnail
Description of Work During 2014-2016, researchers at the USGS Lake Erie Biological Station in collaboration with the University of Toledo used three different gears to try to capture eggs and larvae of Grass Carp. Bongo nets, so named because when held up they resemble Bongo drums, are fine-mesh, cone-shaped nets that are towed through the water for 5 minutes. These nets capture floating eggs (Grass Carp eggs float) and any small fish that can’t swim fast enough to get out of the way. Light traps are fished at night and capture fish that are attracted to light – like Grass Carp. Light traps are fished for about 1 hour at a time in backwater areas where small fish seek cover from current and predators and abundant...
thumbnail
Description of Work The Science in the Great Lakes (SiGL) Mapper is a map-based discovery tool that spatially displays basin-wide multi-disciplinary monitoring and research activities conducted by both USGS and partners from all five Great Lakes. It was designed to help Great Lakes researchers and managers strategically plan, implement, and analyze monitoring and restoration activities by providing easy access to historical and on-going project metadata while allowing them to identify gaps (spatially and topically) that have been underrepresented in previous efforts or need further study. SiGL provides a user-friendly and efficient way to explore Great Lakes projects and data through robust search options while...
thumbnail
OBIS-USA brings together marine biological occurrence data – recorded observations of identifiable marine species at a known time and place, collected primarily from U.S. Waters or with U.S. funding. Coordinated by the Core Science, Analytics, Synthesis, and Libraries (CSAS&L) Program of the United States Geological Survey (USGS), OBIS-USA, strives to meet national data integration and dissemination needs for marine data about organisms and ecosystems. OBIS-USA is part of an international data sharing network (Ocean Biogeographic Information System, OBIS) coordinated by the Intergovernmental Oceanographic Commission, of UNESCO (United Nations Educational, Science and Cultural Organization International Oceanographic...
Categories: Project; Types: NSDI Cooperative Agreements Program Project; Tags: Arctic Ocean, Atlantic Ocean, Bay of Fundy, Beaufort Sea, Bering Sea, All tags...
thumbnail
The Nature Conservancy - Great Lakes Program is leading the development of a scalable (Great Lakes wide, individual lake basin, to coastal reach within a lake basin) rule-based spatial model for ranking the relative importance of coastal lands and waters as habitat for migrating birds. Results will guide conservation actions including land acquisition, land and water management and restoration, and development of wind energy facilities. Specifically, the team will: 1) refine, create and integrate migratory bird stopover habitat models which depict the distribution of potential stopover sites along or near the shorelines of Lakes Michigan, Huron, Erie, and Ontario; and, 2) develop an online portal that will deliver...
thumbnail
Mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera) (a.k.a. EPT taxa) are the most environmentally sensitive of freshwater insects. They are utilized the world over as indicators of water quality in flowing waters. Their decline has been documented in Asia, Europe, and North America. A 220,321 record dataset of new and museum EPT specimen records covering much of the Midwest and Maximum Entropy (Maxent) software were used construct to current and future, climate influenced distribution models. Nearly 100 physical and historic vegetation variables and 9 BIOCLIM variables derived from downscaled climate data for the region were employed in this process. A total of 426 EPT species were...
thumbnail
Great Lakes fishery managers and stakeholders have little information regarding how climate change could affect the management and conservation of fish populations, including those of high recreational and commercial value. Scientists from the US Geological Survey (USGS) worked closely with state management agencies and the National Wildlife Federation to complete several objectives that provide knowledge to aid their planning and management strategies in anticipation of coming changes. First, researchers updated a regional Great Lakes climate model to predict water level changes, water temperatures, and ice cover data for the entire Great Lakes basin 50-100 years into the future. Second, researchers used satellite...
thumbnail
Ecological connectivity between the Great Lakes and their tributaries is widely impaired, and many agencies and organizations are currently investing in restoring these connections to enhance target fish and wildlife populations. To assist in targeting these investments, we have been developing spatial data on the location and attributes of barriers (dams and road-stream crossings) and fish breeding habitat throughout the Great Lakes basin to analyze the optimum strategy for enhancing connectivity and restoring fish migrations. The proposed work will result in guidance for barrier restoration at scales from individual watersheds to the entire basin, refine methodologies for spatial analysis of barriers, and provide...


map background search result map search result map Ocean Biogeographic Information System (OBIS) - USA Dataset Collection Forecasting Climate Change Induced Effects on Recreational and Commercial Fish Populations in the Great Lakes Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes On-a-wing and a (GIS) Layer: Prioritizing migratory bird habitat along Great Lakes shoreline Regional decision support tool for identifying vulnerabilities of riverine habitat and fishes to climate change Developing a Portfolio of Mitigation and Adaption Options for Land Managers in the Upper Great Lakes Moderization of National Wetlands Inventory (NWI) mapping Predicting climate change effects on riverine aquatic insects in the Upper Midwest Re-establishing ecological connectivity between the Great Lakes and their tributaries: Prioritization in a complex system Scenarios for forest reserve expansion and adaptive management under alternative climate change scenarios in the northern Great Lakes New York Nowcast, Recreational Beaches of New York A decision support system for prioritizing protection & restoration of Great Lakes coastal wetlands Guiding Great Lakes Coastal Wetlands Restoration through Geodesign Field Assessments of Great Lakes Barriers Guiding Great Lakes Coastal Wetlands Restoration through Geodesign Understanding How Climate Change Will Impact Aquatic Food Webs in the Great Lakes A decision support system for prioritizing protection & restoration of Great Lakes coastal wetlands New York Nowcast, Recreational Beaches of New York Moderization of National Wetlands Inventory (NWI) mapping Scenarios for forest reserve expansion and adaptive management under alternative climate change scenarios in the northern Great Lakes Developing a Portfolio of Mitigation and Adaption Options for Land Managers in the Upper Great Lakes Forecasting Climate Change Induced Effects on Recreational and Commercial Fish Populations in the Great Lakes On-a-wing and a (GIS) Layer: Prioritizing migratory bird habitat along Great Lakes shoreline Regional decision support tool for identifying vulnerabilities of riverine habitat and fishes to climate change Predicting climate change effects on riverine aquatic insects in the Upper Midwest Re-establishing ecological connectivity between the Great Lakes and their tributaries: Prioritization in a complex system Field Assessments of Great Lakes Barriers Ocean Biogeographic Information System (OBIS) - USA Dataset Collection