Skip to main content
Advanced Search

Filters: Tags: Ground failure (X)

64 results (127ms)   

View Results as: JSON ATOM CSV
thumbnail
This folder contains landslide inventories of the M 6.3 Lefkada, Greece earthquake, which occurred on 2003-08-14 at 05:14:54 UTC. The hypocenter was located at 39.160°N 20.605°E at a depth of 10.0 km. For further information see the link to the full USGS event page for this earthquake under “Related External Resources” below. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey (USGS) and thus have not been reviewed for accuracy and completeness by the USGS. They are presented as part of this data series for convenience of the user only, as part of an effort to make published ground-failure inventories more accessible from...
thumbnail
This inventory was originally created by Gorum and others (2014) describing the landslides triggered by a sequence of earthquakes, with the largest being the M 6.2 17 km N of Puerto Aisen, Chile earthquake that occurred on 21 April 2007 at 23:45:56 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory includes landslides triggered by a sequence of earthquakes rather than a single mainshock. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory...
thumbnail
This inventory was originally created by Xu and others (2014) describing the landslides triggered by the M 5.9 Gansu, China earthquake, also known as the Minxian - Zhangxian earthquake, that occurred on 21 July 2013 at 23:45:56 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata...
thumbnail
This inventory was originally created by the Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2001) describing the landslides triggered by the M 7.7 San Miguel, El Salvador earthquake that occurred on 13 January 2001 at 17:33:32 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and...
thumbnail
This inventory was originally created by Zhao (2021) describing the landslides triggered by the M 7.5 Palu, Indonesia earthquake that occurred on 28 September 2018 at 10:02:45 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
Landslides are damaging and deadly, and they occur in every U.S. state. However, our current ability to understand landslide hazards at the national scale is limited, in part because spatial data on landslide occurrence across the U.S. varies greatly in quality, accessibility, and extent. Landslide inventories are typically collected and maintained by different agencies and institutions, usually within specific jurisdictional boundaries, and often with varied objectives and information attributes or even in disparate formats. The purpose of this data release is to provide an openly accessible, centralized map of existing information on landslide occurrence across the entire U.S. The data release includes digital...
thumbnail
This inventory was originally created by Basharat and others (2014) describing the landslides triggered by the M 7.6 Kashmir, Pakistan earthquake that occurred on 8 October 2005 at 03:50:40 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...
thumbnail
This inventory was originally created by Yagi and others (2009) describing the landslides triggered by the M6.9 Eastern Honshu, Japan earthquake that occurred on 2008-06-13 at 23:43:45 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...
thumbnail
This inventory was originally created by Harp and others (2016) describing the landslides triggered by the M 7.0 Haiti earthquake that occurred on 12 January 2010 at 21:53:10 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
This inventory describes the landslides triggered by the M6.5 Friuli, Italy earthquake that occurred on 1976-05-06 at 20:00:11 UTC. The inventory comes from the Italian Catalogue of Earthquake-Induced Ground Effects (Italian acronym CEDIT) by Martino and others (2014), which contains inventories from multiple earthquakes. To obtain the most up to date version of the entire, original catalog along with more details about its compilation, please visit the CEDIT webpage on the website of the Centre for Research (CERI) of the Department of Earth Sciences in the Sapienza University of Rome: http://www.ceri.uniroma1.it/index.php/web-gis/cedit/. Care should be taken when comparing with other inventories because different...
thumbnail
This inventory was originally created by Harp and others (1984) describing the landslides triggered by a sequence of earthquakes, with the largest being the M 6.5 Mammoth Lakes, California earthquake that occurred on 25 May 1980 at 19:44:50 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory includes landslides triggered by a sequence of earthquakes rather than a single mainshock. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and...
thumbnail
Landslide susceptibility maps are essential tools in infrastructure planning, hazard mitigation, and risk reduction. Susceptibility maps trained in one area have been found to be unreliable when applied to different areas (Woodard et al., 2023). This limitation leads to the need for a national map that is higher resolution and rigorous, but simple enough to be applied to diverse terrains and landslide types. The susceptibility maps presented here cover the conterminous United States (CONUS), Alaska (AK), Hawaii (HI), and Puerto Rico (PR) with a resolution of 90-m. Other United States (U.S.) territories were not considered due to insufficient landslide and digital elevation data. We also provide information on the...
thumbnail
This inventory was originally created by Tanyas and others (2022) describing the landslides triggered by the M 7.5 Papua New Guinea earthquake that occurred on 25 February 2018 at 17:44:44 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological...
thumbnail
This inventory was originally created by Xu and others (2014) describing the landslides triggered by the M 7.9 Wenchuan, China earthquake that occurred on 12 May 2008 at 06:28:01 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S. Geological Survey...
thumbnail
This inventory was originally created by the Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2001) describing the landslides triggered by the M 6.6 San Salvador, El Salvador earthquake that occurred on 13 February 2001 at 14:22:05 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data...
thumbnail
This inventory describes the landslides triggered by the the M6.2 Norcia, Italy earthquake that occurred on 2016-08-24 at 01:36:32 UTC. The inventory comes from the Italian Catalogue of Earthquake-Induced Ground Effects (Italian acronym CEDIT) by Martino and others (2014), which contains inventories from multiple earthquakes. To obtain the most up to date version of the entire, original catalog along with more details about its compilation, please visit the CEDIT webpage on the website of the Centre for Research (CERI) of the Department of Earth Sciences in the Sapienza University of Rome: http://www.ceri.uniroma1.it/index.php/web-gis/cedit/. Care should be taken when comparing with other inventories because different...
thumbnail
This inventory was originally reated by Sekiguchi and Sato (2006) describing the landslides triggered by a sequence of earthquakes, with the largest being the M 6.6 Niigata-Chuetsu, Japan earthquake that occurred on 23 October 2004 at 08:56:00 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory includes landslides triggered by a sequence of earthquakes rather than a single mainshock. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data...
thumbnail
In many parts of the United States and around the globe, the instrumental earthquake record is insufficient to characterize seismic hazard or constrain potential ground motion intensities from individual sources. This lack of data is particularly acute for the Cascadia Subduction Zone (CSZ) of the U.S. Pacific Northwest, where paleoseismic evidence suggests a long history of large megathrust events. While evidence for pre-historic CSZ earthquakes has been discovered onshore and offshore Cascadia, the identification and dating of paleoliquefaction from pre-historic earthquakes offers the best potential for placing quantitative constraints on shaking intensities during past CSZ events. For this dataset, seven Cone...
thumbnail
This dataset represents 763 tributary canyons and/or watersheds adjacent to the Colorado River in Grand Canyon with associated debris flow probabilities from 2004. Also, these data include tributary canyon and/or watersheds to Glen Canyon and several smaller watersheds in Grand Canyon where debris flow data is currently unavailable. Historic probabilities of debris flow occurrence were estimated by modeling the known frequency distribution with drainage basin parameters observed to control the process by which debris flows initiate and travel to the river. Observations from 1984 through 2003 provide a 20-year record of all debris flows that reached the Colorado River in Grand Canyon, and repeat photography provides...
thumbnail
This inventory was originally created by Harp and Jibson (1995) describing the landslides triggered by the M 6.7 Northridge, California earthquake that occurred on 17 January 1994 at 12:30:55 UTC. Care should be taken when comparing with other inventories because different authors use different mapping techniques. This inventory also could be associated with other earthquakes such as aftershocks or triggered events. Please check the author methods summary and the original data source for more information on these details and to confirm the viability of this inventory for your specific use. With the exception of the data from USGS sources, the inventory data and associated metadata were not acquired by the U.S....


map background search result map search result map Harp and others (2016) Harp and Jibson (1995) Xu and others (2014) Gorum and others (2014) 2003-08-14 Lefkada, Greece M 6.3 Basharat and others (2014) Harp and others (1984) Sekiguchi and Sato (2006) Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2001) Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2001) Xu and others (2014) Yagi and others (2009) Martino and others (2014) Martino and others (2016) - M6.2 Norcia, Italy, 2016 Landslide Inventories across the United States Tanyas and others (2022) Zhao (2021) Cone Penetration Test data of Paleoliquefaction sites in Washington and Oregon Slope-Relief Threshold Landslide Susceptibility Models for the United States and Puerto Rico Debris flow probabilities of ungaged tributaries to the Colorado River in Grand Canyon, AZ Xu and others (2014) 2003-08-14 Lefkada, Greece M 6.3 Sekiguchi and Sato (2006) Yagi and others (2009) Martino and others (2014) Basharat and others (2014) Gorum and others (2014) Harp and others (1984) Martino and others (2016) - M6.2 Norcia, Italy, 2016 Harp and Jibson (1995) Ministerio de Medio Ambiente y Recursos Naturales, El Salvador (2001) Tanyas and others (2022) Debris flow probabilities of ungaged tributaries to the Colorado River in Grand Canyon, AZ Cone Penetration Test data of Paleoliquefaction sites in Washington and Oregon Xu and others (2014) Landslide Inventories across the United States Slope-Relief Threshold Landslide Susceptibility Models for the United States and Puerto Rico