Filters: Tags: Groundwater-Flow Modeling (X)
79 results (12ms)
Filters
Date Range
Extensions Types
Contacts
Categories Tag Types
|
Summary The U. S. Geological Survey (USGS) will conduct simulations using existing aquifer data, including geologic logs from vertical profile borings (VPBs) and well installations, water levels, and pump test data available from the water districts for these production wells. Subsequently USGS will incorporate data from a groundwater pump test and additional data from new VPBs and monitoring wells. Using particle tracking maps, USGS will illustrate the spatial configuration of the capture zone and percentage of capture of the shallow and deep plumes in each production well. The model area will be limited to achieve these objectives and make maximum use of available sampling locations in the region. USGS will...
Categories: Data,
Project;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Cooperative Water Program,
GW Model,
GW Model,
GW model,
Groundwater Monitoring,
An integrated hydrologic-flow model, called the Central Platte Integrated Hydrologic Model, was constructed using the MODFLOW-One-Water Hydrologic Model code with the Newton solver. This code integrates climate, landscape, surface water, and groundwater-flow processes in a fully coupled approach. This study provided the Central Platte Natural Resources District (CPNRD) with an advanced numerical modeling tool to assist with the update of their Groundwater Management Plan by providing them information on modeled future GW levels under different climate scenarios and management practices. This tool will allow the CPNRD to evaluate other scenarios as management changes in the future. A predevelopment model simulated...
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
This dataset includes well logs used in the creation of the Cortland hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
Digital hydrogeologic datasets were developed for the Rondout-Neversink study area in upstate New York in cooperation with the New York State Department of Environmental Conservation. These datasets define the hydrogeologic framework of the valley-fill aquifer and surrounding till-covered uplands within the study area. Datasets include: bedrock elevation raster, lacustrine silt and clay top and bottom elevation rasters, lidar minimum elevation raster, lacustrine extent polygon, valley-fill extent polygon, and surficial geology polygons. Elevation layers were interpolated at 125-foot discretization to match the model grid cell size.
This dataset includes well logs used in the creation of the Olean hydrogeologic framework. Well logs were used from multiple sources (DEC, DOT, NWIS, ESOGIS, and recently digitized archived material) and were a crucial component in generating hydrogeologic layer elevations and thicknesses. Well logs are available in their original form on GeoLog Locator (https://webapps.usgs.gov/GeoLogLocator/#!/) and provided here in the digitized form (shapefiles and feature classes), which were used in the generation of the hydrogeologic framework.
This dataset includes "smoothing points" used in the creation of the Jamestown hydrogeologic framework. Smoothing points were manually added and were used to enhance interpolated layers using geologic assumptions and include: valley edge points, centerline bedrock points, and upland bedrock SSURGO points.
The town of Greene is located in Chenango County, New York. Previous USGS reports here include Open-File Report 2003-242 (Hetcher and others, 2003), and Scientific Investigations Map 2914 (Hetcher-Aguila and Miller, 2005). The five child pages below break the data up into georeferenced and digitized previous report data, interpreted geologic information, well logs, supplemental point data, and interpolation statistics.
The integrated hydrologic-flow model, called the Osage Nation Integrated Hydrologic Model (ONIHM) was developed to assess water availability in the Osage Nation. This model was developed using the MODFLOW-One Water Hydrologic Model (MF-OWHM) code. The ONIHM was discretized into an orthogonal grid of 276 rows and 289 columns, and each grid cell measured 1,312.34 feet (ft) per side, with eight variably thick vertical layers that represented the alluvial and bedrock aquifers within the study area, including the Vamoosa-Ada aquifer and other minor bedrock aquifers deposited during the Pennsylvanian Period. The ONIHM was delineated into 128 water-balance subregions based on surface watersheds, land cover, and water supply...
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
This dataset includes georeferenced TIFF files from two separate reports for the Jamestown study area that have been digitized into feature classes within ArcGIS. Not all digitized and georeferenced data was necessarily used in the final interpolations, however they may have contributed to understanding the local hydrogeology.
This dataset includes spreadsheets with statistical data (mean and median absolute error) used in deciding which interpolation method best fit the corresponding dataset. All statistical data were paired with a visual inspection of the interpolation prior to determining the final raster product. All spreadsheets were generated using an automated python script (Jahn, 2020).
Introduction High nitrate concentrations are a common concern among many purveyors, including the Suffolk County Water Authority (SCWA), the largest supplier of water to residents in Suffolk County. Typically, the amount of nitrate in groundwater is related to land use, where the greatest concentrations are observed in agricultural regions. In many areas, the nitrate concentration has increased steadily in recent years, even in areas that are no longer farmed and are now sewered. A statistical analysis for trends of over 20 years in nitrate concentration data from SCWA wells is needed to determine the susceptibility of supply-wells to exceed the Maximum Contaminant Level (MCL) for nitrate. This information is essential...
Categories: Data,
Project;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Contaminants, Natural,
Contaminants, Natural,
Contaminants, natural,
Cooperative Water Program,
GW Model,
Water-management alternatives being considered for New York City involve aquifer storage and recovery, or ASR. An ASR system may store surplus water in an aquifer, then later recover this water in times of short supply. The success of an ASR system depends on the quantity and quality of water that can be withdrawn during recovery phases, which are influenced by hydrogeologic, microbiological, and geochemical factors. Mixing surface waters with ambient ground waters within a deep confined aquifer may cause freshwater/saltwater interface movement, clay swelling, mineral dissolution, new patterns of bacterial growth, and other hydrogeologic consequences. In 2005, data were collected at Tottenville, Staten Island,...
Categories: Data,
Project;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Completed,
Cooperative Water Program,
GW Model,
GW Model,
GW model,
Background and Problem Tully Valley is part of the Onondaga Trough, which extends from the Valley Heads Moraine in the south to Onondaga Lake in the north near Syracuse, New York (fig. 1). The Onondaga Trough is filled with a complex sequence of glacial and post-glacial sediments that overlie Devonian carbonate rock and shale and Silurian shale and salt (fig.2). Mudboils, volcano-like cones of fine sand and silt, have been documented in the Tully Valley since the late 1890s, and have been continuously discharging turbid water into Onondaga Creek since the 1950s (Kappel and others, 1996). Continuous mudboil activity appears to be correlated with salt solution-mining activities in brine fields at the southern...
Categories: Data,
Project;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Aquifer Mapping,
GW Model,
Geophysics,
Groundwater Recharge,
Groundwater-Flow Modeling,
Background The North Atlantic Coastal Plain (NACP) covers a land area of approximately 34,000 mi 2 along the eastern seaboard of the United States from Long Island, N.Y., southward to the northern portion of North Carolina. This area is underlain by a thick wedge of sedimentary deposits that form a complex groundwater system in which the sands and gravels function as confined aquifers, and the silts and clays function as confining units. These confined aquifers of the NACP constitute a major source of water for public and domestic supply for the nearly 27 million people living in the region, as well as being important source of water for industrial and agricultural purposes. Increases in population and changes...
Categories: Data,
Project;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Cooperative Water Program,
Delaware,
Focused Assessments,
Focused Assessments,
Focused Assessments,
Groundwater in the Newark basin aquifer flows primarily through discrete water-bearing zones parallel to the strike and dip of bedding, whereas flow perpendicular to the strike is restricted, thereby imparting anisotropy to the groundwater flow field. The finite-element model SUTRA was used to represent bedrock structure in the aquifer by spatially varying the orientation of the hydraulic conductivity tensor to reflect variations in the strike and dip of the bedding. Directions of maximum and medium hydraulic conductivity were oriented parallel to the bedding, and the direction of minimum hydraulic conductivity was oriented perpendicular to the bedding. Groundwater flow models were prepared to simulate local flow...
Categories: Data,
Project;
Types: Downloadable,
Map Service,
OGC WFS Layer,
OGC WMS Layer,
Shapefile;
Tags: Completed,
Cooperative Water Program,
GW Model,
GW Model,
GW model,
Problem The discharge of freshwater and associated loading of nutrients and other dissolved constituents from the Long Island aquifer system to surrounding estuaries and their tributaries are increasingly recognized as critical factors in the health of these ecosystems. However, further work is needed to scientifically characterize these factors and present them to the public in an appropriate manner. Many organizations have undertaken assessments of this discharge and loading for discrete groundwater source areas and (or) receiving surface waters, applying a variety of techniques and assumptions. In part, this is because there is no delineation of recharge areas to the island’s groundwater-fed streams and estuaries...
This data release contains model simulation results of a particle tracking analysis to delineate areas that provide recharge to surface waters and public-supply wells on Long Island, NY. The analysis partitions the recharge areas based on particle travel times of greater than or less than 10 years to reach the receiving surface water or well. The simulation was performed using a regional-scale numerical model of the Long Island aquifer system (Walter and others, 2020a and 2020b) for average 2005-2015 conditions. The model implements MODFLOW-NWT (Niswonger and others, 2011) to represent steady-state groundwater pumping and aquifer recharge conditions; recharge areas were identified and partitioned using the particle-tracking...
This groundwater model archive documents a transient, regional-scale numerical model of the Long Island aquifer system that simulates hydrologic conditions for the period 1900-2019 using U.S. Geological Survey’s groundwater modeling software MODFLOW 6 (Hughes and others, 2017). The development and calibration of the numerical model is documented in Walter and others (2024). The model input and output files included in this data release are documented in the readme.txt. The model simulates historical water levels, stream flows, and the position of the saltwater interface in response to time-varying changes in pumping and recharge stresses for the period 1900-2019. This archive also contains input and output files...
|
|